如圖1,在直角梯形中,,,.將沿折起,使平面平面,得到幾何體,如圖2所示.

(1) 求證:平面;(2) 求幾何體的體積.

(1)見解析 (2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面.①證明:平面平面; ②若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:在多面體中,,,
,

(1)求證:;
(2)求證:;
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-中,,D,E分別為BC,的中點,的中點,四邊形是邊長為6的正方形.

(1)求證:平面
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.
(Ⅰ)求證:平面;
(Ⅱ)設(shè)的中點為,求證:平面
(Ⅲ)設(shè)平面將幾何體分割成的兩個錐體的體積分別為、,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直四棱柱中,已知,
(1)求證:;
(2)設(shè)上一點,試確定的位置,使平面,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點,ABCE為菱形,∠BAD=120°,PA=AB,G,F(xiàn)分別是線段CE,PB上的動點,且滿足=λ∈(0,1).

(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)如圖,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一點P在平面ABC內(nèi)的射影是AB中點M,二面角P—AC—B的大小為45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知正方體ABCD-A1B1C1D1中,點E為上底面A1C1的中心,若+x+y,則x、y的值分別為(  )

A.x=1,y=1 B.x=1,y=
C.x=,y= D.x=,y=1

查看答案和解析>>

同步練習冊答案