【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分),分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于80分”,估計的概率;
(3)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”’,比賽成績低于80分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有99.9%的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):,.
【答案】(1);(2);(3)列聯(lián)表見解析,沒有
【解析】
(1)由題意結(jié)合各組頻率和為1即可得解;
(2)由題意求出比賽成績不低于80分的頻率,由樣本估計總體即可得解;
(3)由題意完成列聯(lián)表,代入公式求出,與比較后即可得解.
(1)由題意,
∴;
(2)由頻率分布直方圖可得樣本中比賽成績不低于80分的頻率為:,
∴可估計的概率為0.35;
(3)由頻率分布直方圖可知抽取的100名學生中,優(yōu)秀的人數(shù)為,
列聯(lián)表如下:
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 10 | 40 | 50 |
女生 | 25 | 25 | 50 |
合計 | 35 | 65 | 100 |
∴,
∴不能有的把握認為比賽成績是否優(yōu)秀與性別有關(guān).
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標準方程;
(2)若不經(jīng)過點的直線:與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問名不同性別的大學生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | |
愛好 | 40 | 20 |
不愛好 | 20 | 30 |
由算得,
參照附表,以下不正確的有( )
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過的前提下,認為“愛好該項運動與性別無關(guān)”
C.有以上的把握認為“愛好該項運動與性別有關(guān)”
D.有以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求在圖所示的的方格中“圈”的個數(shù).在這里,一條封閉的折線叫做圈,如果這條折線的邊均由方格的邊組成,且折線經(jīng)過的任意一個方格頂點都只與折線的兩條邊相連.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點,是圓上任意一點,線段的垂直平分線交于點,當點在圓上運動時,點的軌跡為曲線.
1求曲線的方程;
2若直線 與曲線相交于兩點,為坐標原點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過坐標原點,圓的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程;
(2)設(shè)直線和圓相交于點、兩點,求的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com