如果關(guān)于x的不等式|x-a|+|x+4|≥1的解集是全體實數(shù),則實數(shù)a的取值范圍是
 
考點:絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:本題可以利用絕對值不等式求出不等式左邊的最小值,利用恒成立思想得到本題結(jié)論.
解答: 解:∵關(guān)于x的不等式|x-a|+|x+4|≥1的解集是全體實數(shù),
∴即對于任意實數(shù)x,|x-a|+|x+4|≥1恒成立.
∵|x-a|+|x+4|=|-x+a|+|x+4|≥|(-x+a)+(x+4)|=|a+4|,
∴|a+4|≥1,
∴a+4≤-1或a+4≥1,
∴a≤-5或a≥-3.
故答案為(-∞,-5]∪[-3,+∞).
點評:本題考查的是恒成立問題,可以通過研究函數(shù)的最小值得到本題結(jié)論.本題有一定的思維難度,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足x=3sinα,y=3cosα,則x,y之間的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的公差d不為0,Sn是其前n項和,給出下列命題:
①若d>0,且S3=S8,則S5和S6都是{Sn}中的最小項;
②給定n,對于一切k∈N+(k<n),都有an-k+an+k=2an;
③若d<0,則{Sn}中一定有最大的項;
④存在k∈N+,使ak-ak+1和ak-ak-1同號;
⑤S2013>3(S1342-S671).
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(2x)=6x-1,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sinx+4cosx在x∈(0,
π
2
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax-lnx,a∈R.
(Ⅰ)當(dāng)a=2時,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)f(x)在x=1處有極值,求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=(-∞,+∞),集合M={x|x≤-3},則∁UM=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=x1-lga在(0,+∞)增函數(shù),則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,-1),
b
=(x,2),若
a
b
=1,則x=( 。
A、2B、-2C、3D、-3

查看答案和解析>>

同步練習(xí)冊答案