分析 (Ⅰ)把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.
(Ⅱ)由題意可得f(x)min≥c,利用絕對(duì)值三角不等式求得|x-1|+|x+2|的最小值為3,可得c的范圍.
解答 解:(Ⅰ)∵函數(shù)f(x)=|x-1|+|x+2|,故由關(guān)于x的不等式f(x)≥4可得$\left\{\begin{array}{l}{x≤-2}\\{1-x-x-2≥4}\end{array}\right.$①,或$\left\{\begin{array}{l}{-2<x<1}\\{1-x+x+2≥4}\end{array}\right.$②,或 $\left\{\begin{array}{l}{x≥1}\\{x-1+x+2≥4}\end{array}\right.$③.
解①求得x≤-$\frac{5}{2}$,解②求得x∈∅,解③求得x≥$\frac{3}{2}$.
綜上可得,x≤-$\frac{5}{2}$,或x≥$\frac{3}{2}$,故原不等式的解集為{x|x≤-$\frac{5}{2}$,或x≥$\frac{3}{2}$ }.
(Ⅱ) 若關(guān)于x的不等式f(x)≥c恒成立,則f(x)min≥c.
∵|x-1|+|x+2|≥|x-1-(x+2)|=3,當(dāng)且僅當(dāng)-2≤x≤1時(shí),取等號(hào),∴|x-1|+|x+2|的最小值為3,即c≤3,
即c的范圍為(-∞,3].
點(diǎn)評(píng) 本題主要考查絕對(duì)值三角不等式的應(yīng)用,絕對(duì)值不等式的解法,函數(shù)的恒成立問(wèn)題,體現(xiàn)了轉(zhuǎn)化數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com