【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°. (Ⅰ)證明:直線(xiàn)BC∥平面PAD;
(Ⅱ)若△PAD面積為2 ,求四棱錐P﹣ABCD的體積.
【答案】(Ⅰ)證明:四棱錐P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD平面PAD,BC平面PAD, ∴直線(xiàn)BC∥平面PAD;
(Ⅱ)解:四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°.設(shè)AD=2x,
則AB=BC=x,CD= ,O是AD的中點(diǎn),
連接PO,OC,CD的中點(diǎn)為:E,連接OE,
則OE= ,PO= ,PE= = ,
△PCD面積為2 ,可得: =2 ,
即: ,解得x=2,PE=2 .
則V P﹣ABCD= × (BC+AD)×AB×PE= =4 .
【解析】(Ⅰ)利用直線(xiàn)與平面平行的判定定理證明即可. (Ⅱ)利用已知條件轉(zhuǎn)化求解幾何體的線(xiàn)段長(zhǎng),然后求解幾何體的體積即可.
【考點(diǎn)精析】利用直線(xiàn)與平面平行的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:
(1)直線(xiàn)EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足:,,
(1)、求數(shù)列的前項(xiàng)和為;
(2)、若不等式恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的左、右焦點(diǎn)分別為,右準(zhǔn)線(xiàn)與軸的交點(diǎn)為,.
(1)已知點(diǎn)在橢圓上,求實(shí)數(shù)的值;
(2)已知定點(diǎn).
① 若橢圓上存在點(diǎn),使得,求橢圓的離心率的取值范圍;
② 如圖,當(dāng)時(shí),記為橢圓上的動(dòng)點(diǎn),直線(xiàn)分別與橢圓交于另一點(diǎn),若且,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一隧道內(nèi)設(shè)雙行線(xiàn)公路,其截面由一長(zhǎng)方形和一拋物線(xiàn)構(gòu)成,如圖所示.為保證安全,要求行駛車(chē)輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上高度之差至少要有米.若行車(chē)道總寬度為米.
(1)計(jì)算車(chē)輛通過(guò)隧道時(shí)的限制高度;
(2)現(xiàn)有一輛載重汽車(chē)寬米,高米,試判斷該車(chē)能否安全通過(guò)隧道?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,SD底面ABCD,SD=2,其中分別是的中點(diǎn),是上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)落在什么位置時(shí),∥平面,證明你的結(jié)論;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.(12分)
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com