【題目】已知長(zhǎng)方形, , .以的中點(diǎn)為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求以、為焦點(diǎn),且過(guò)、兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線交(1)中橢圓于、兩點(diǎn),是否存在直線,使得弦為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線的方程;若不存在,說(shuō)明理由.
【答案】(1) ;(2) 存在過(guò)的直線: 使得以弦為直徑的圓恰好過(guò)原點(diǎn).
【解析】試題分析:(1)橢圓的標(biāo)準(zhǔn)方程是;(2)設(shè)直線: ,聯(lián)立方程: ,得到韋達(dá)定理,以為直徑的圓恰好過(guò)原點(diǎn),則,所以,代入韋達(dá)定理即可解出答案。
試題解析:
(1)由題意可得點(diǎn), , 的坐標(biāo)分別為, ,
設(shè)橢圓的標(biāo)準(zhǔn)方程是()
則 ,∴
∴
∴橢圓的標(biāo)準(zhǔn)方程是
(2)由題意直線的斜率存在,可設(shè)直線的方程為()
設(shè), 兩點(diǎn)的坐標(biāo)分別為, ,聯(lián)立方程:
消去整理得, 有,
若以為直徑的圓恰好過(guò)原點(diǎn),則,所以
所以,即
所以, 即
得,
所以直線的方程為,或
所以存在過(guò)的直線: 使得以弦為直徑的圓恰好過(guò)原點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,京津冀等地?cái)?shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬(wàn)輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點(diǎn)圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)(。├茫1)所求的回歸方程,預(yù)測(cè)該市車流量為8萬(wàn)輛時(shí)的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬(wàn)輛以內(nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2sinθ,正方形ABCD的頂點(diǎn)都在C1上,且依次按逆時(shí)針?lè)较蚺帕,點(diǎn)A的極坐標(biāo)為( , ).
(1)求點(diǎn)C的直角坐標(biāo);
(2)若點(diǎn)P在曲線C2:x2+y2=4上運(yùn)動(dòng),求|PB|2+|PC|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:(1)存在實(shí)數(shù)x,使=; (2)若是銳角△的內(nèi)角,則>; (3)函數(shù)y=sin( -)是偶函數(shù); (4)函數(shù)y=sin2的圖象向右平移個(gè)單位,得到y=sin(2+)的圖象.其中正確的命題的序號(hào)是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)f(x),其導(dǎo)函數(shù)記為f'(x),滿足f(x)+f(2﹣x)=(x﹣1)2 , 且當(dāng)x≤1時(shí),恒有f'(x)+2<x.若 ,則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,1]
B.
C.[1,+∞)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知M是正四面體ABCD棱AB的中點(diǎn),N是棱CD上異于端點(diǎn)C,D的任一點(diǎn),則下列結(jié)論中,正確的個(gè)數(shù)有( 。
(1)MN⊥AB;
(2)若N為中點(diǎn),則MN與AD所成角為60°;
(3)平面CDM⊥平面ABN;
(4)不存在點(diǎn)N,使得過(guò)MN的平面與AC垂直.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四棱錐P﹣ABCD中,底面ABCD的邊長(zhǎng)為4,PD=4,E為PA的中點(diǎn),
(1)求證:平面EBD⊥平面PAC;
(2)求直線BE與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)水輪的半徑為4米,水輪圓心距離水面2米,已知水輪每分鐘逆時(shí)針轉(zhuǎn)動(dòng)4圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)(圖中點(diǎn))開(kāi)始計(jì)算時(shí)間.
(1)將點(diǎn)距離水面的高度(米)表示為時(shí)間(秒)的函數(shù);
(2)在水輪旋轉(zhuǎn)一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)離開(kāi)水面?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com