若點(diǎn)P(3,-1)為圓(x-2)2+y2=25的弦AB的中點(diǎn),則直線AB的方程是
 
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:由垂徑定理可知,圓心C與點(diǎn)P的連線與AB垂直.可求直線AB的斜率,從而由點(diǎn)斜式方程得到直線AB的方程.
解答: 解:由(x-2)2+y2=25,
可得,圓心C(2,0).
kPC=
0+1
2-3
=-1

∵PC⊥AB,
∴kAB=1.
∴直線AB的方程為
y+1=x-3.
即x-y-4=0.
故答案為:x-y-4=0.
點(diǎn)評(píng):本題考查垂徑定理,直線的點(diǎn)斜式方程.圓的標(biāo)準(zhǔn)方程等知識(shí).屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊落在直線y=2x上,求sinα,cosα和tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某在校大學(xué)生提前創(chuàng)業(yè),想開一家服裝專賣店,經(jīng)過預(yù)算,店面裝修費(fèi)為10000元,每天需要房租水電等費(fèi)用100元,受營銷方法、經(jīng)營信譽(yù)度等因素的影響,專賣店銷售總收入P與店面經(jīng)營天數(shù)x的關(guān)系是P(x)=
300x-
1
2
x2,0≤x<300
45000,x≥300
,則總利潤最大時(shí)店面經(jīng)營天數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓3x2+4y2=48的左、右焦點(diǎn),點(diǎn)P在橢圓上,滿足sin∠PF1F2=
3
5
,△PF1F2的面積為6,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則至少有
 
的把握認(rèn)為“學(xué)生性別與是否支持該活動(dòng)有關(guān)系”.
附:
P(K2≥k0 0.100 0.050 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1,F(xiàn)2分別為雙曲線
y2
a2
-
x2
b2
=1
的下,上焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線的下支上,點(diǎn)M在上準(zhǔn)線上,且滿足
F2O
=
MP
F1M
=λ(
F1P
|
F1P
|
+
F1O
|
F1O
|
)(λ>0)
,則雙曲線的離心率
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

臺(tái)風(fēng)中心從A地以每小時(shí)20千米的速度向東北方向移動(dòng),離臺(tái)風(fēng)中心30千米的地區(qū)為危險(xiǎn)區(qū),城市B在A地正東40千米處,則城市B處在危險(xiǎn)區(qū)內(nèi)的時(shí)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果f(x)為定義在R上的偶函數(shù),且導(dǎo)數(shù)f′(x)存在,則f′(0)的值為( 。
A、2B、1C、0D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題p:(x-2)(x-3)=0,q:x-2=0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案