曲線f(x)=x3+x2+1在點(diǎn)(1,f(1))處的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出曲線f(x)=x3+x2+1在點(diǎn)(1,f(1))處的導(dǎo)數(shù)值,這個(gè)導(dǎo)數(shù)值即函數(shù)圖象在該點(diǎn)處的切線的斜率,然后根據(jù)直線的點(diǎn)斜式方程求解即可.
解答: 解:因?yàn)閒(x)=x3+x2+1,
所以f′(x)=3x2+2x,f(1)=3
所以曲線y=x3+x2+1在點(diǎn)(1,f(1))處的切線的斜率為5.
此處的切線方程為y=5x-2
故答案為:y=5x-2.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義、關(guān)鍵是求出直線的斜率,正確利用直線的點(diǎn)斜式方程,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義某種運(yùn)算?,S=a?b的運(yùn)算原理如圖:則式子5?2+3?4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)方程θ=
π
2
+arcsinρ(ρ≥0)化為直角坐標(biāo)方程的形式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈[0,4],則滿足不等式log
1
2
(x-1)>0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在橢圓
x2
a2
+
y2
b2
=1(a>b>0)中F,A,B分別為其左焦點(diǎn),右頂點(diǎn),上頂點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OB的中點(diǎn),若△FMA為直角三角形,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
(2)若等比數(shù)列的前n項(xiàng)和sn=2n+k,則必有k=-1;
(3)若x∈R+,則2x+2-x的最小值為2;
(4)雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);
(5)平面內(nèi)到定點(diǎn)(3,-1)的距離等于到定直線x+2y-1=0的距離的點(diǎn)的軌跡是拋物線.其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足任意的m,n∈N*有am-n=am+an+2mn成立,且a1=1,則a2014的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一大學(xué)生畢業(yè)找工作,在面試考核中,他共有三次答題機(jī)會(huì)(每次問(wèn)題不同).假設(shè)他能正確回答每題的概率均為
2
3
,規(guī)定有兩次回答正確即通過(guò)面試,那么該生“通過(guò)面試”的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案