(x+
1
x
6的展開(kāi)式中的常數(shù)項(xiàng)等于
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:(x+
1
x
6的展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
6
•x6-2r
令6-2r=0,求得 r=3,∴展開(kāi)式中的常數(shù)項(xiàng)等于
C
3
6
=20,
故答案為:20.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)求函數(shù)f(x)單調(diào)區(qū)間;
(Ⅱ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y≥0
x-y≥0
2x-y-2≤0
,記t=
y-1
x+1
的最大值為m,最小值為n,則m-n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=
x4-x3+2x2-x+1-sinx
(x2+1)2
的最大值和最小值分別為M和m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(1,0)且與已知直線x-y+1=0平行的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)常數(shù)a>0,若9x+
a2
x
≥a2-7對(duì)一切的正實(shí)數(shù)x均成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB、AC、CE是圓的弦,過(guò)點(diǎn)B作圓的切線與AC的延長(zhǎng)線相交于點(diǎn)D,且
AC
CD
=
AF
FB
,AF=3,F(xiàn)B=1,EF=
3
2
,則線段CD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(xlnx)′=lnx+1,則∫
 
e
1
lnxdx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),?x∈R,都有f(2-x)=f(2+x),且當(dāng)x∈[0,2]時(shí),f(x)=2x-2,若函數(shù)g(x)=f(x)-loga(x+1)(a>0,a≠1)在區(qū)間(-1,9]內(nèi)恰有三個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,
1
9
)∪(
7
,+∞)
B、(
1
9
,1
)∪(1,
3
C、(
1
9
,
1
5
)∪(
3
7
D、(
1
7
1
3
)∪(
5
,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案