【題目】經(jīng)過多年的運作,“雙十一”搶購活動已經(jīng)演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2018年“雙十一”網(wǎng)購狂歡節(jié),某廠家擬投入適當?shù)膹V告費,對網(wǎng)上所售產(chǎn)品進行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),每一件產(chǎn)品的銷售價格定為元,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.
【答案】(1)();(2)當時,促銷費用投入1萬元,廠家的利潤最大,為萬元;當時,促銷費用投入萬元,廠家的利潤最大,為萬元.
【解析】
(1)根據(jù)產(chǎn)品的利潤銷售額產(chǎn)品的成本建立函數(shù)關(guān)系;
(2)利用導數(shù)可求出該函數(shù)的最值.
(1)由題意知,,
將代入化簡得:();
(2),
(。┊時,
①當時,,所以函數(shù)在上單調(diào)遞增,
②當時,,所以函數(shù)在上單調(diào)遞減,
從而促銷費用投入萬元時,廠家的利潤最大;
(ⅱ)當時,因為函數(shù)在上單調(diào)遞增,
所以在上單調(diào)遞增,故當時,函數(shù)有最大值,
即促銷費用投入萬元時,廠家的利潤最大.
綜上,當時,促銷費用投入1萬元,廠家的利潤最大,為萬元;
當時,促銷費用投入萬元,廠家的利潤最大,為萬元.
科目:高中數(shù)學 來源: 題型:
【題目】對于無窮數(shù)列,,若-…,則稱是的“收縮數(shù)列”.其中,,分別表示中的最大數(shù)和最小數(shù).已知為無窮數(shù)列,其前項和為,數(shù)列是的“收縮數(shù)列”.
(1)若,求的前項和;
(2)證明:的“收縮數(shù)列”仍是;
(3)若,求所有滿足該條件的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, AD丄AC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為( )
A.7B.12C.6D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)分別是橢圓的左、右焦點,過且斜率不為零的直線與橢圓交于兩點,的周長為
(1)求橢圓的方程
(2)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)的取值范圍;
(Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足
?若存在,求出的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:
①在區(qū)間上單調(diào)遞減,②存在常數(shù)p,使其值域為,則稱函數(shù)是函數(shù)的“逼進函數(shù)”.
(1)判斷函數(shù)是不是函數(shù)的“逼進函數(shù)”;
(2)求證:函數(shù)不是函數(shù),的“逼進函數(shù)”
(3)若是函數(shù)的“逼進函數(shù)”,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調(diào)查,將計劃在今年購買5G手機的員工稱為“追光族”,計劃在明年及明年以后才購買5G手機的員工稱為“觀望者”調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認為該公司員工屬于“追光族”與“性別”有關(guān);
屬于“追光族” | 屬于“觀望者” | 合計 | |
女性員工 | |||
男性員工 | |||
合計 | 100 |
(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于“追光族”現(xiàn)從這6名中隨機抽取3名,求抽取到的3名中恰有1名屬于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com