給出以下五個(gè)命題:其中正確命題的序號(hào)是
①②③⑤
①②③⑤

①命題“對(duì)任意x∈Rx2+x+1>0”的否定是“存在x∈Rx2+x+1≤0”
②函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0、1)上存在零點(diǎn)
③“a=1”是“函數(shù)y=cos2ax的最小正周期為π”的充分不必要條件
④直線x-2y+5=0與圓x2+y2=8交于A、B兩點(diǎn),則|AB|=2
2

⑤若直線2ax-bx+8=0(a>0,b>0)平分圓x2+y2+4x-8y+1=0周長(zhǎng)則
8
a
+
2
b
最小值為9.
分析:根據(jù)全稱、特稱命題的否定方法,可判斷①的真假;根據(jù)零點(diǎn)存在定理可得②的真假;對(duì)于③,利用最小正周期為π,求出a,即可判斷選項(xiàng);對(duì)于④,先求出圓心到直線的距離d,再利用弦長(zhǎng)公式求得弦長(zhǎng)|AB|;⑤由題意可知圓x2+y2+4x-8y+1=0的圓心(-2,4)在直線2ax-bx+8=0上,可得a+b=2,而
8
a
+
2
b
=
1
2
8
a
+
2
b
)(a+b),展開利用基本不等式可求最小值.
解答:解:①對(duì),因?yàn)槊}“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1≤0”.
②中f(0)=1>0,f(1)=
1
2
-1<0,根據(jù)零點(diǎn)存在定理,
得函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0、1)上存在零點(diǎn).可知②正確;
③:函數(shù)y=cos2ax,它的周期是
|2a|
=π,a=±1,
顯然“a=1”可得“函數(shù)y=cos2ax的最小正周期為π”,后者推不出前者,
∴“a=1”是“函數(shù)y=cos2ax的最小正周期為π”的充分不必要條件,正確;
④:圓x2+y2=8的圓心為(0,0),半徑等于2
2
,圓心不在直線x-2y+5=0上,
由圓的性質(zhì)可知,|AB|<2
2
,故④不對(duì);
⑤:由圓的性質(zhì)可知,直線2ax-bx+8=0即是圓的直徑所在的直線方程,
∵圓x2+y2+4x-8y+1=0的圓心(-2,4)在直線2ax-bx+8=0上
∴-4a-4b+8=0即a+b=2,
8
a
+
2
b
=
1
2
8
a
+
2
b
)(a+b)=
1
2
(10+
8b
a
+
2a
b
)≥
1
2
(10+8)=9,
當(dāng)且僅當(dāng)
8b
a
=
2a
b
取等號(hào),
8
a
+
2
b
的最小值9,正確.
故答案為:①②③⑤.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷,熟練掌握相關(guān)的基本概念是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)命題,其中所有正確命題的序號(hào)為
①③
①③

①函數(shù)f(x)=
x2-2x
+2
x2-5x+4
的最小值為l+2
2
;
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動(dòng)點(diǎn)P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2[-
π
2
π
2
]
,且|x1|>|x2|時(shí),有f (x1)>f(x2)”是真命題;
④“a=
1
0
1-x2
dx
”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項(xiàng)和為Sn,
OA
OB
為不共線向量,又
OP
=a
OA
+a2012
OB
,若
PA
PB
,則S2012=2013.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省皖南八校高三(上)9月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出以下五個(gè)命題,其中所有正確命題的序號(hào)為   
①函數(shù)的最小值為l+2;
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動(dòng)點(diǎn)P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2,且|x1|>|x2|時(shí),有f (x1)>f(x2)”是真命題;
④“”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項(xiàng)和為Sn,為不共線向量,又,若,則S2012=2013.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省蚌埠市懷遠(yuǎn)一中高三(上)第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出以下五個(gè)命題:其中正確命題的序號(hào)是   
①命題“對(duì)任意x∈Rx2+x+1>0”的否定是“存在x∈Rx2+x+1≤0”
②函數(shù)在區(qū)間(0、1)上存在零點(diǎn)
③“a=1”是“函數(shù)y=cos2ax的最小正周期為π”的充分不必要條件
④直線x-2y+5=0與圓x2+y2=8交于A、B兩點(diǎn),則
⑤若直線2ax-bx+8=0(a>0,b>0)平分圓x2+y2+4x-8y+1=0周長(zhǎng)則最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省皖南八校高三(上)9月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出以下五個(gè)命題,其中所有正確命題的序號(hào)為   
①函數(shù)的最小值為l+2;
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動(dòng)點(diǎn)P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2,且|x1|>|x2|時(shí),有f (x1)>f(x2)”是真命題;
④“”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項(xiàng)和為Sn,為不共線向量,又,若,則S2012=2013.

查看答案和解析>>

同步練習(xí)冊(cè)答案