【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,已知f(A)=2,b=1,△ABC的面積為 ,求 的值.
【答案】
(1)解: .
∴
令 .∴
(2)解:由 , ,∵0<A<π,
∴ .∴ . ,
∴在△ABC中,由余弦定理得:a2=b2+c2﹣2bccosA=3,∴ .
由 ,∴
【解析】(1)利用向量的數(shù)量積通過二倍角公式,兩角和的正弦函數(shù)化簡(jiǎn)函數(shù)的表達(dá)式,然后求f(x)的最小正周期,借助正弦函數(shù)的單調(diào)減區(qū)間求出函數(shù)的單調(diào)遞減區(qū)間;(2)通過f(A)=2,利用三角形的內(nèi)角,求出A的值,利用△ABC的面積為 .
【考點(diǎn)精析】利用正弦函數(shù)的單調(diào)性對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達(dá)式;
(3)設(shè)g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y=的上方,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“過大年,吃水餃”是我國(guó)不少地方過春節(jié)的一大習(xí)俗.2018年春節(jié)前夕,A市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃作樣本,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo),檢測(cè)結(jié)果如頻率分布直方圖所示.
(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若該品牌的速凍水餃的某項(xiàng)質(zhì)量指標(biāo)Z服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求Z落在內(nèi)的概率;
② 若某人從某超市購(gòu)買了1包這種品牌的速凍水餃,發(fā)現(xiàn)該包速凍水餃某項(xiàng)質(zhì)量指標(biāo)值為55,根據(jù)原則判斷該包速凍水餃某項(xiàng)質(zhì)量指標(biāo)值是否正常
附:①;
②若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購(gòu)令”贊成人數(shù)如下表.
月收入(單位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)求下面22列聯(lián)表中的的值,并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)對(duì)“樓市限購(gòu)令” 的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計(jì) | |
贊成 | a | b | |
不贊成 | c | d | |
合計(jì) | 50 |
(2)若對(duì)在[55,65)內(nèi)的被調(diào)查者中隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的2人中不贊成“樓市限購(gòu)令”的人數(shù)為,求的概率.
附:,
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1的左頂點(diǎn)為A(﹣3,0),左焦點(diǎn)恰為圓x2+2x+y2+m=0(m∈R)的圓心M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)A且與圓M相切于點(diǎn)B的直線,交橢圓C于點(diǎn)P,P與橢圓C右焦點(diǎn)的連線交橢圓于Q,若三點(diǎn)B,M,Q共線,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再把得到的圖象向右平移 個(gè)單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大。
(2)若 ,求b+c的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣4,4)上的奇函數(shù),滿足f(2)=1,當(dāng)﹣4<x≤0時(shí),有f(x)=.
(1)求實(shí)數(shù)a,b的值;
(2)若f(m+1)+>0.求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com