【題目】己知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過點(diǎn)的圓心.
(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;
(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.
【答案】(1)圓M: 圓N: ;(2).
【解析】試題分析:
(1)將圓M的參數(shù)方程消去參數(shù)可得直角坐標(biāo)方程;把點(diǎn)化為直角坐標(biāo)可得圓N的圓心和圓N上的一點(diǎn),從而可得半徑,進(jìn)而可求得圓的方程。(2)由于兩圓相離,故兩圓上的兩點(diǎn)間的距離的最小值為圓心距減去兩半徑之和。
試題解析:
(1)將方程消去參數(shù)可得,
所以圓M的方程為。
點(diǎn)的直角坐標(biāo)分別為,
所以圓N的圓心為,半徑為,
故圓N的方程為。
(2)由(1)得圓M,N的圓心距為
,
所以圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.
整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:
定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動(dòng)成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且(),該公司在電飯煲的生產(chǎn)中所獲年利潤(rùn)為(萬元),(注:利潤(rùn)=銷售收入-成本)
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤(rùn)的最大值;
(2)為了讓年利潤(rùn)不低于2360萬元,求年產(chǎn)量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)),,.
(1)記函數(shù),且,求的單調(diào)增區(qū)間;
(2)若對(duì)任意,,,均有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺(tái)中, 與分別是棱長(zhǎng)為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點(diǎn), (, ).
(1)設(shè)中點(diǎn)為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某大學(xué)自主招生的面試中,考生要從規(guī)定的6道科學(xué)題,4道人文題共10道題中,隨機(jī)抽取3道作答,每道題答對(duì)得10分,答錯(cuò)或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對(duì)其中的6道科學(xué)題,乙答對(duì)每道題的概率都是,每個(gè)人答題正確與否互不影響.
(1)求考生甲得分的分布列和數(shù)學(xué)期望;
(2)求甲,乙兩人中至少有一人得分不少于15分的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com