7.在等差數(shù)列{an}中,a1+a2=1,a2016+a2017=3,Sn是數(shù)列{an}的前n項和,則S2017=(  )
A.6051B.4034C.2017D.1009

分析 根據(jù)題意和等差數(shù)列的性質求出a1+a2017的值,由等差數(shù)列的前n項和公式求出S2017的值.

解答 解:在等差數(shù)列{an}中,
因為a1+a2=1,a2016+a2017=3,
所以a1+a2017=a2+a2016=2,
所以S2017=$\frac{2017({a}_{1}+{a}_{2017})}{2}$=2017,
故選C.

點評 本題考查等差數(shù)列的性質、前n項和公式的靈活應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.在數(shù)列{an}中,已知a1=3,且數(shù)列{an+(-1)n}是公比為2的等比數(shù)列,對于任意的n∈N*,不等式a1+a2+…+an≥λan+1恒成立,則實數(shù)λ的取值范圍是(  )
A.$({-∞,\frac{2}{5}}]$B.$({-∞,\frac{1}{2}}]$C.$({-∞,\frac{2}{3}}]$D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入a,b,c分別為1,2,0.3,則輸出的結果為( 。
A.1.125B.1.25C.1.3125D.1.375

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.我國古代數(shù)學名著《九章算術》有“米谷粒分”題:糧倉開倉收糧,有人送來米1536石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得224粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為( 。
A.169石B.192石C.1367石D.1164石

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2. 如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(Ⅰ)若M為PA的中點,求證:AC∥平面MDE;
(Ⅱ)若PB與平面ABCD所成角為45°,求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在(0,+∞)上的函數(shù)f(x)滿足f(xy)+$\frac{1}{2}$-f(x)-f(y)=0,若一族平行線x=xi(i=1,2,…,n)分別與y=f(x)圖象的交點為(x1,y1),(x2,y2),…,(xn,yn),且xi,2f(1),xn-i+1成等比數(shù)列,其中i=1,2,…,n,則$\frac{\sum_{i=1}^{n}{y}_{i}}{n}$=( 。
A.2nB.1C.$\frac{1}{2}$D.$\frac{n}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.現(xiàn)有1000根某品種的棉花纖維,從中隨機抽取50根,纖維長度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)如表,據(jù)此估計這1000根中纖維長度不小于37.5mm的根數(shù)是180.
纖維長度頻數(shù)
[22.5,25.5)3
[25.5,28.5)8
[28.5,31.5)9
[31.5,34.5)11
[34.5,37.5)10
[37.5,40.5)5
[40.5,43.5]4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=120°,AB=PC=2,$AP=BP=\sqrt{2}$.
(Ⅰ)線段AB上是否存在點M,使AB⊥平面PCM?并給出證明.
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=$\sqrt{3}$,側棱PA與底面ABCDE所成角為45°,S△PBE=$\sqrt{3}$,點M在側棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

同步練習冊答案