【題目】某校進(jìn)行理科、文科數(shù)學(xué)成績(jī)對(duì)比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布表如下.

分組

頻數(shù)

頻率

分組

頻數(shù)

頻率

[135,150]

8

0.08

[135,150]

4

0.04

[120,135)

17

0.17

[120,135)

18

0.18

[105,120)

40

0.4

[105,120)

37

0.37

[90,105)

21

0.21

[90,105)

31

0.31

[75,90)

12

0. 12

[75,90)

7

0.07

[60,75)

2

0.02

[60,75)

3

0.03

總計(jì)

100

1

總計(jì)

100

1

理科 文科

(Ⅰ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表,求文科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值;(精確到0.01)

(Ⅱ)請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān):

數(shù)學(xué)成績(jī)120分

數(shù)學(xué)成績(jī)<120分

合計(jì)

理科

文科

合計(jì)

200

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(Ⅰ)108.65分(Ⅱ)沒有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān)

【解析】分析:(Ⅰ)由圖表求出理科數(shù)學(xué)成績(jī)的頻率分布表中成績(jī)小于105分的頻率和成績(jī)大于120分的頻率,由得答案;

(Ⅱ)根據(jù)題目所給的數(shù)據(jù)填寫2×2列聯(lián)表即可,計(jì)算K的觀測(cè)值K2,對(duì)照題目中的表格,得出統(tǒng)計(jì)結(jié)論.

詳解(Ⅰ)文科數(shù)學(xué)成績(jī)的頻率分布表中,成績(jī)小于105分的頻率為0.41<0.5,

成績(jī)小于120分的頻率為0.78>0.5,

故文科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值為分.

(Ⅱ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表得如下列聯(lián)表:

數(shù)學(xué)成績(jī)

數(shù)學(xué)成績(jī)

合計(jì)

理科

25

75

100

文科

22

78

100

合計(jì)

47

153

200

,故沒有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知,對(duì)任意nN*,都有2Sn=(n+1an

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列的前項(xiàng)和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn),,,曲線上任意一點(diǎn)滿足

的方程;

已知點(diǎn),動(dòng)點(diǎn) 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點(diǎn)分別為D,E,求的面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與函數(shù)的圖象有三個(gè)不同的交點(diǎn)、、,其中.給出下列四個(gè)結(jié)論: ①;②;③;④.其中,正確結(jié)論的個(gè)數(shù)有( 個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中, , ,若將其沿AC折成直二面角D﹣AC﹣B,則三棱錐D﹣ACB的外接球的表面積為(
A.16π
B.8π
C.4π
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲,乙兩個(gè)抽獎(jiǎng)方案供員工選擇. 方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率均為 ,第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束,若中獎(jiǎng),則通過(guò)拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),則獲得1000元;若未中獎(jiǎng),則不能獲得獎(jiǎng)金.
方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為 ,每次中獎(jiǎng)均可獲得獎(jiǎng)金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),哪個(gè)方案更劃算?
(Ⅲ)已知公司共有100人在活動(dòng)中選擇了方案甲,試估計(jì)這些員工活動(dòng)結(jié)束后沒有獲獎(jiǎng)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.

(1)求證:BC⊥面CDE;

(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測(cè)量其身高,被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.

(1)請(qǐng)補(bǔ)全頻率分布直方圖并求第七組的頻率;

(2)估計(jì)該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,,事件,事件,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意的x∈R,都有f(﹣x)+f(x)=﹣6,且當(dāng)x≥0時(shí),f(x)=2x﹣4,定義在R上的函數(shù)g(x)=a(x﹣a)(x+a+1),兩函數(shù)同時(shí)滿足:x∈R,都有f(x)<0或g(x)<0;x∈(﹣∞,﹣1),f(x)g(x)<0,則實(shí)數(shù)a的取值范圍為(
A.(﹣3,0)
B.
C.(﹣3,﹣1)
D.(﹣3,﹣1]

查看答案和解析>>

同步練習(xí)冊(cè)答案