5.中國有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計(jì)算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推.例如6613用算籌表示就是,則9117用算籌可表示為( 。
A.B.C.D.

分析 根據(jù)新定義直接判斷即可

解答 解:由題意各位數(shù)碼的籌式需要縱橫相間,
個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,
則9117 用算籌可表示為,
故選:C

點(diǎn)評(píng) 本題考查了新定義的學(xué)習(xí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-1=0,圓C1與圓C2的公切線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)袋中有兩個(gè)紅球一個(gè)黑球,除顏色不同,其他均相同,現(xiàn)有放回的抽取,每次抽取一個(gè),記下顏色后放回袋中,連續(xù)摸三次,X表示三次中紅球被摸中的次數(shù),每個(gè)小球被抽取的幾率相同,每次抽取相對(duì)立,則方差D(X)=(  )
A.2B.1C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等比數(shù)列{an}中,若a2=5,a4=20,則a6=80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義N*在上的函數(shù)f(x),對(duì)任意的正整數(shù)n1,n2,都有f(n1+n2)=1+f(n1)+f(n2),且f(1)=1,若對(duì)任意的正整數(shù)n,有${a_n}=f({2^n})+1$,則an=2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:an2-an-an+1+1=0,a1=2
(1)求a2,a3;
(2)證明數(shù)列為遞增數(shù)列;
 (3)求證:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=$\frac{{{x^2}-x+3}}{x-1}$(x∈[3,+∞))的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,某貨場有兩堆集裝箱,一堆2個(gè),一堆3個(gè),現(xiàn)需要全部裝運(yùn),每次只能從其中一堆取最上面的一個(gè)集裝箱,則在裝運(yùn)的過程中不同取法的種數(shù)是10(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓Γ:$\frac{x^2}{a^2}$+y2=1(a>1)的左焦點(diǎn)為F1,右頂點(diǎn)為A1,上頂點(diǎn)為B1,過F1,A1,B1三點(diǎn)的圓P的圓心坐標(biāo)為($\frac{{\sqrt{3}-\sqrt{2}}}{2}$,$\frac{{1-\sqrt{6}}}{2}$).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=kx+m(k,m為常數(shù),k≠0)與橢圓Γ交于不同的兩點(diǎn)M和N.
(i)當(dāng)直線l過E(1,0),且$\overrightarrow{EM}$+2$\overrightarrow{EN}$=$\overrightarrow 0$時(shí),求直線l的方程;
(ii)當(dāng)坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{{\sqrt{3}}}{2}$時(shí),且△MON面積為$\frac{{\sqrt{3}}}{2}$時(shí),求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案