3.命題“?x∈R,x2=x”的否定是(  )
A.?x∉R,x2≠xB.?x∈R,x2≠xC.?x∉R,x2≠xD.?x∈R,x2≠x

分析 利用特稱命題的否定是全稱命題,寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題“?x∈R,x2=x”的否定是:?x∈R,x2≠x.
故選:B.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實(shí)數(shù)x,y滿足5x+12y=60,則$\sqrt{{x^2}+{y^2}}$的最小值等于$\frac{60}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了考察某校各班參加課外書法小組的人數(shù),從全校隨機(jī)抽取5個(gè)班級(jí),把每個(gè)班級(jí)參加該小組的人數(shù)作為樣本數(shù)據(jù).已知樣本平均數(shù)為7,樣本方差為4,且樣本數(shù)據(jù)互不相同,則樣本數(shù)據(jù)中的最大值為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,(x>0)}\\{1,(x=0)}\\{x+4(x<0)}\end{array}\right.$,則f(f(f(-4)))=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上單調(diào),且f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),則f(x)的最小正周期為  (  )
A.$\frac{π}{2}$B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.向量$\overrightarrow{AB}$,$\overrightarrow{AC}$的夾角為60°,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,點(diǎn)D是線段BC的中點(diǎn),則|$\overrightarrow{AD}$|的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若在△F1PF2中,∠F1PF2=60°,則橢圓的離心率是( 。
A.$\frac{\sqrt{3}}{3}$B.2-$\sqrt{2}$C.2-$\sqrt{3}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對(duì)應(yīng)關(guān)系如表:
x123
f(x)231
x123
g(x)321
則方程g(f(x))=x的解集為{3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“若x+y≠10,則x≠3或x≠7”,及其逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案