20.(本小題滿分14分)

四棱錐中,側(cè)棱,底面是直角梯形,,且,的中點(diǎn).
(1)求異面直線所成的角;
(2)線段上是否存在一點(diǎn),使得?若存在,求出的值;若不存在,請說明理由.
解:以為坐標(biāo)原點(diǎn),分別以軸、軸、軸的正方向建立空間直角坐標(biāo)系,則.………2分

(1).
……4分
,即異面直線所成的角為.…………7分
(2)假設(shè)線段上存在一點(diǎn),使,設(shè).
設(shè),則,即,
.…………8分
.
,,,即.
即線段上存在一點(diǎn),使得,且.………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知正四棱柱ABCD----A1B1C1D1,AB=1,AA1=2,點(diǎn)E為CC1的中點(diǎn),點(diǎn)F為BD1的中點(diǎn)。

(1)證明:EF⊥平面;
(2)求點(diǎn)A1到平面BDE的距離;
(3)求BD1與平面BDE所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是(   )
A.垂直于同一平面的兩平面也平行.
B.與兩條異面直線都相交的兩條直線一定是異面直線.
C.過一點(diǎn)有且只有一條直線與已知直線垂直;
D.垂直于同一直線的兩平面平行;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正△ABC的邊長為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B。
(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求二面角E—DF—C的余弦值;
(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,矩形中,,上的點(diǎn),且
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間中垂直于同一條直線的兩條直線的位置關(guān)系是
A.平行B.相交C.異面D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

紙質(zhì)的正方體的六個面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位是
A.南B.北C.西D.下

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四邊形ABCD是矩形,P∉平面ABCD,過BC作平面BCFE交AP于E,交DP于F.求證:四邊形BCFE是梯形.

查看答案和解析>>

同步練習(xí)冊答案