已知f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),那么a+b的值是________.


分析:依照偶函數(shù)的定義,對定義域內(nèi)的任意實(shí)數(shù),f(-x)=f(x),且定義域關(guān)于原點(diǎn)對稱,a-1=-2a.
解答:∵f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),
∴f(-x)=f(x),∴b=0,
又 a-1=-2a,
∴a=
∴a+b=
故答案為
點(diǎn)評:本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實(shí)數(shù),f(-x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對稱,定義域區(qū)間2個端點(diǎn)互為相反數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例2:已知f(x)=ax2+bx+c的圖象過點(diǎn)(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
x2+12
對一切實(shí)數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,則f(2)的取值范圍是
[2,10]
[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在區(qū)間(
1
2
,1)
上不單調(diào),則
3b-2
3a+2
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)無零點(diǎn),則g(x)>0對?x∈R成立;
②若f(x)有且只有一個零點(diǎn),則g(x)必有兩個零點(diǎn);
③若方程f(x)=0有兩個不等實(shí)根,則方程g(x)=0不可能無解
其中真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2-3ax+a2-1(a<0),則f(3),f(-3),f(
3
2
)從小到大的順序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步練習(xí)冊答案