11.已知三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A為銳角.
(1)求三角形內(nèi)角A的大;
(2)若a=5,b=8,求c的值.

分析 (1)根據(jù)$sin2A=\sqrt{3}cos2A$化簡(jiǎn),即可求解A的大;
(2)a=5,b=8,利用余弦定理即可求解c的值.

解答 解:(1)由題意,$sin2A=\sqrt{3}cos2A$,即tan2A=$\sqrt{3}$.
∴2A=$\frac{π}{3}$或者2A=$\frac{4π}{3}$,
∵角A為銳角,
∴A=$\frac{π}{6}$.
(2)由(1)可知A=$\frac{π}{6}$,a=5,b=8;
由余弦定理,2bccosA=c2+b2-a2,
可得:${c}^{2}-8\sqrt{3}c+39=0$,
解得:c=$4\sqrt{3}+3$或者$4\sqrt{3}-3$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)能力和余弦定理的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,△ABC為正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,試在AE上確定一點(diǎn)M,使得DM∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,△ABO是以∠O=120°為頂點(diǎn)的等腰三角形,點(diǎn)P在以AB為直徑的半圓內(nèi)(包括邊界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x、y∈R),則x2+y2的取值范圍是[$\frac{1}{2}$,2+$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知$\overrightarrow a=({2,1}),\overrightarrow b=({-1,3})$,若存在向量$\overrightarrow c$使$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,則$|{\overrightarrow c}|$=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$,若存在x,y使得2x+y≤a成立,則a的取值范圍是(  )
A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)是定義在R上的奇函數(shù),給出下列命題:
①f(0)=0,
②若f(x)在[0,+∞)上有最小值-1,則f(x)在(-∞,0]上有最大值1,
③若f(x)在[1,+∞)上為增函數(shù),則f(x)在(-∞,-1]上為減函數(shù),
④若x>0時(shí),f(x)=x2-2x,則x<0時(shí),f(x)=-x2-2x.
其中正確的序號(hào)是:①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,-1),若$\overrightarrow{a}$∥($\overrightarrow{a}-\overrightarrow$),則$\overrightarrow{a}$,$\overrightarrow$的夾角為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$,若f(x)滿足f(x+π)=-f(x),且$f(0)=\frac{1}{2}$,則函數(shù)h(x)=2cos(ωx+φ)在區(qū)間$[{0,\frac{π}{2}}]$上的值域?yàn)椋ā 。?table class="qanwser">A.$[{-1,\sqrt{3}}]$B.$[{-2,\sqrt{3}}]$C.$[{-\sqrt{3},2}]$D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)的圖象$y={log_2}\frac{2-x}{2+x}$的圖象(  )
A.關(guān)于原點(diǎn)對(duì)稱(chēng)B.關(guān)于直線 y=-x 對(duì)稱(chēng)
C.關(guān)于y軸對(duì)稱(chēng)D.關(guān)于直線y=x 對(duì)稱(chēng)

查看答案和解析>>

同步練習(xí)冊(cè)答案