【題目】棉花的纖維長(zhǎng)度是棉花質(zhì)量的重要指標(biāo).在一批棉花中抽測(cè)了60根棉花的纖維長(zhǎng)度(單位:),將樣本數(shù)據(jù)制作成如下的頻率分布直方圖:
下列關(guān)于這批棉花質(zhì)量狀況的分析不正確的是( )
A.纖維長(zhǎng)度在的棉花的數(shù)量為9根
B.從這60根棉花中隨機(jī)選取1根,其纖維長(zhǎng)度在的概率為0.335
C.有超過(guò)一半的棉花纖維長(zhǎng)度能達(dá)到以上
D.這批棉花的纖維長(zhǎng)度的中位數(shù)的估計(jì)值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了調(diào)查高粱的高度、粒的顏色與產(chǎn)量的關(guān)系,對(duì)700棵高粱進(jìn)行抽樣調(diào)查,得到高度頻數(shù)分布表如下:
表1:紅粒高粱頻數(shù)分布表
農(nóng)作物高度() | ||||||
頻數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
表2:白粒高粱頻數(shù)分布表
農(nóng)作物高度() | ||||||
頻數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
(1)估計(jì)這700棵高粱中紅粒高粱的棵數(shù);畫(huà)出這700棵高粱中紅粒高粱的頻率分布直方圖;
(2)①估計(jì)這700棵高粱中高粱高(cm)在的概率;②在紅粒高粱中,從高度(單位:cm)在中任選3棵,設(shè)表示所選3棵中高(單位:cm)在的棵數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,動(dòng)點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),過(guò)點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平行四邊形中,,,,以對(duì)角線為折痕把折起,使點(diǎn)到圖2所示點(diǎn)的位置,使得.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知王明比較喜愛(ài)打籃球,近來(lái),他為了提高自己的投籃水平,制定了一個(gè)夏季訓(xùn)練計(jì)劃.班主任為了了解其訓(xùn)練效果,開(kāi)始訓(xùn)練前,統(tǒng)計(jì)了王明場(chǎng)比賽的得分,計(jì)算出得分?jǐn)?shù)據(jù)的中位數(shù)為分,平均得分為分,得分?jǐn)?shù)據(jù)的方差為,訓(xùn)練結(jié)束后統(tǒng)計(jì)了場(chǎng)比賽得分成績(jī)莖葉圖如下圖:
(1)求王明訓(xùn)練結(jié)束后統(tǒng)計(jì)的場(chǎng)比賽得分的中位數(shù),平均得分以及方差;
(2)若只從訓(xùn)練前后統(tǒng)計(jì)的各場(chǎng)比賽得分?jǐn)?shù)據(jù)分析,訓(xùn)練計(jì)劃對(duì)王明投籃水平的提高是否有幫助?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;
(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿足1e(e為自然對(duì)數(shù)的底數(shù))求x1x2的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com