曲線y=f(x)=ax-
b
x
在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0,則a,b的值分別為( 。
A、
a=1
b=3
B、
a=-1
b=3
C、
a=1
b=-3
D、
a=-1
b=-3
分析:先求出切點(diǎn)坐標(biāo),然后根據(jù)曲線f(x)過(guò)切點(diǎn)以及在x=2處的導(dǎo)數(shù)等于切線的斜率建立方程組,解之即可.
解答:解:∵方程7x-4y-12=0可化為y=
7
4
x-3
.當(dāng)x=2時(shí),y=
1
2

f′(x)=a+
b
x2
,于是
2a-
b
2
=
1
2
a+
b
4
=
7
4
解得
a=1
b=3.

故選A.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,x∈R.
(Ⅰ)若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個(gè)數(shù);
(Ⅲ)設(shè)a<b,比較f(
a+b
2
)
,
f(b)-f(a)
b-a
的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
a(x-1)2
2x+b
,曲線y=f(x)
與直線l:4x+3y-5=0切于點(diǎn)A的橫坐標(biāo)為2,g(x)=2x-
1
3

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)于一切x∈[2,5],總存在x1∈[m,n],使f(x)=g(x1)成立,求n-m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃岡模擬)已知函數(shù)f(x)=ax+lnx(a∈R).
(1)若a=1,求曲線y=f(x)在x=
12
處切線的斜率;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)設(shè)g(x)=2x,若對(duì)任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔東南州一模)已知函數(shù)f(x)=x3+mx2+nx+m-1,當(dāng)x=-1時(shí)取得極值,且函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)O是坐標(biāo)原點(diǎn),A點(diǎn)是x軸上橫坐標(biāo)為2的點(diǎn),B點(diǎn)是曲線y=f(x)(0<x≤
45
)
上但不在x軸上的動(dòng)點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案