設(shè)M(x0,y0)為拋物線C:x2=8y上一點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),以F為圓心、|FM|為半徑的圓和拋物線C的準(zhǔn)線相交,則y0的取值范圍是
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)F到準(zhǔn)線的距離d1,M(x0,y0)到準(zhǔn)線的距離d2,依題意,d1=4,d2=y0+2,且d2>d1,從而可得答案.
解答: 解:∵拋物線C:x2=8y的焦點(diǎn)F(0,2),準(zhǔn)線方程為:y=-2,
設(shè)F到準(zhǔn)線的距離d1,M(x0,y0)到準(zhǔn)線的距離d2,

則d1=4,d2=y0+2=|FM|(拋物線定義),
依題意得:|FM|>d1=4,
即y0+2>4,
解得:y0>2.
∴y0的取值范圍是(2,+∞).
故答案為:(2,+∞).
點(diǎn)評(píng):本題考查拋物線的簡(jiǎn)單性質(zhì),著重考查拋物線定義的應(yīng)用,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=m(m>0)與拋物線y2=ax(a>0)相交于A(1,1),B(1,-1)兩點(diǎn).
(1)求圓O的半徑,拋物線的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程;
(2)設(shè)P是拋物線上不同于A,B的點(diǎn),且在圓外部,PA的延長(zhǎng)線交圓于點(diǎn)C,直線PB與x軸交于點(diǎn)D,點(diǎn)E在直線PB上,且四邊形ODEC為等腰梯形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式(m-1)x2+(m-1)x+2>0的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四邊形OABC,其對(duì)角線為OB,AC,M,N分別是對(duì)邊OA,BC的中點(diǎn),點(diǎn)G在線段MN上,且
MG
=2
GN
,現(xiàn)用基組{
OA
,
OB
,
OC
}表示向量
OG
,有
OG
=x
OA
+y
OB
+z
OC
,則x,y,z的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x+
1-x2
的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足約束條件:
x≤1
y≤2
2x+y-2≥0
,則z=x+2y的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)的和為Sn,若S6=27,S21=189,則a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

線段AB是圓C1:x2+y2=10的一條直徑,離心率為
5
的雙曲線C2以A,B為焦點(diǎn).若P是圓C1與雙曲線C2的一個(gè)公共點(diǎn),則|PA|+|PB|的值為( 。
A、2
2
B、2
15
C、4
3
D、6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-
1
2
x2+2x-5的圖象的對(duì)稱軸是( 。
A、直線x=2
B、直線a=-2
C、直線y=2
D、直線x=4

查看答案和解析>>

同步練習(xí)冊(cè)答案