【題目】某農(nóng)科站技術(shù)員為了解某品種樹苗的生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取一個(gè)容量為的樣本,測(cè)量樹苗高度(單位:).經(jīng)統(tǒng)計(jì),高度均在區(qū)間內(nèi),將其按,,,,,分成組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹苗為優(yōu)質(zhì)樹苗.
(1)求頻率分布直方圖中的值;
(2)已知所抽取的這棵樹苗來(lái)自于甲、乙兩個(gè)地區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與地區(qū)有關(guān)?
甲地區(qū) | 乙地區(qū) | ||
優(yōu)質(zhì)樹苗 | |||
非優(yōu)質(zhì)樹苗 | |||
合計(jì) |
附:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)(2)表見解析,有的把握認(rèn)為優(yōu)質(zhì)樹苗與地區(qū)有關(guān).
【解析】
(1)利用頻率之和為列方程,解方程求得的值.
(2)有所給數(shù)據(jù)可得列聯(lián)表,根據(jù)臨界值表,即可求得答案.
(1) 頻率分布直方圖得:
解得:.
(2)樣本中優(yōu)質(zhì)樹苗的個(gè)數(shù)為.
所填表格為
甲地區(qū) | 乙地區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 5 | 20 | 25 |
非優(yōu)質(zhì)樹苗 | 50 | 25 | 75 |
合計(jì) | 55 | 45 | 100 |
.
有的把握認(rèn)為優(yōu)質(zhì)樹苗與地區(qū)有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為1的正方體中,是線段上的動(dòng)點(diǎn),則下列結(jié)論正確的是( ).
①異面直線與所成的角為
②
③三棱錐的體積為定值
④的最小值為2.
A.①②③B.①②④C.③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù).
(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個(gè)零點(diǎn);
(2)設(shè)x0是f(x)的一個(gè)零點(diǎn),證明曲線y=ln x 在點(diǎn)A(x0,ln x0)處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若關(guān)于x的不等式f(x)≤a﹣|x|在區(qū)間[﹣1,2]上恒成立,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南豫南九校高三下學(xué)期第一次聯(lián)考】設(shè)函數(shù).
(I)當(dāng)時(shí), 恒成立,求的范圍;
(II)若在處的切線為,且方程恰有兩解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱形與正三角形的邊長(zhǎng)均為2,它們所在平面互相垂直,,且.
(1)求證:;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在正方體的棱上(不含端點(diǎn)),給出下列五個(gè)命題:
①過(guò)點(diǎn)有且只有一條直線與直線,都是異面直線;
②過(guò)點(diǎn)有且只有一條直線與直線,都相交;
③過(guò)點(diǎn)有且只有一條直線與直線,都垂直;
④過(guò)點(diǎn)有無(wú)數(shù)個(gè)平面與直線,都相交;
⑤過(guò)點(diǎn)有無(wú)數(shù)個(gè)平面與直線,都平行;
其中真命題是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com