18.已知函數(shù)f(x)=lnx+ln(2-x),則(  )
A.f(x)在(0,2)單調(diào)遞增B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對(duì)稱D.y=f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱

分析 由已知中函數(shù)f(x)=lnx+ln(2-x),可得f(x)=f(2-x),進(jìn)而可得函數(shù)圖象的對(duì)稱性.

解答 解:∵函數(shù)f(x)=lnx+ln(2-x),
∴f(2-x)=ln(2-x)+lnx,
即f(x)=f(2-x),
即y=f(x)的圖象關(guān)于直線x=1對(duì)稱,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的圖象與圖象變化,熟練掌握函數(shù)圖象的對(duì)稱性是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在平行四邊形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE∥AF,∠BAF=90°,平面ABCD⊥平面ABEF.
(Ⅰ)求證:AC⊥平面ABEF;
(Ⅱ)求證:CD∥平面AEF;
(Ⅲ)求三棱錐D-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足zi=1+i,則z2=( 。
A.-2iB.2iC.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M-m( 。
A.與a有關(guān),且與b有關(guān)B.與a有關(guān),但與b無(wú)關(guān)
C.與a無(wú)關(guān),且與b無(wú)關(guān)D.與a無(wú)關(guān),但與b有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|x<2},B={x|3-2x>0},則( 。
A.A∩B={x|x<$\frac{3}{2}$}B.A∩B=∅C.A∪B={x|x<$\frac{3}{2}$}D.AUB=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則z=3x-4y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=2x3+x2,則f(2)=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某學(xué)習(xí)小組由學(xué)生和教師組成,人員構(gòu)成同時(shí)滿足以下三個(gè)條件:
(i)男學(xué)生人數(shù)多于女學(xué)生人數(shù);
(ii)女學(xué)生人數(shù)多于教師人數(shù);
(iii)教師人數(shù)的兩倍多于男學(xué)生人數(shù).
①若教師人數(shù)為4,則女學(xué)生人數(shù)的最大值為6.
②該小組人數(shù)的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下面是關(guān)于復(fù)數(shù)z=2-i的四個(gè)命題:p1:|z|=5;p2:z2=3-4i;p3:z的共軛復(fù)數(shù)為-2+i;p4:z的虛部為-1,其中真命題為( 。
A.p2,p3B.p1,p2C.p2,p4D.p3,p4

查看答案和解析>>

同步練習(xí)冊(cè)答案