如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點(diǎn).
(1)求異面直線與所成角的大;
(2)求直線和平面所成角的正弦值.
(1),(2)
解析試題分析:(1)求空間角,一般利用空間向量解決.首先要建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,由平面平面及,運(yùn)用面面垂直性質(zhì)定理,可得,這樣確定豎坐標(biāo).橫坐標(biāo)與縱坐標(biāo)可根據(jù)右手系建立.因?yàn)楫惷嬷本與所成角等于向量與夾角或其補(bǔ)角,而異面直線與所成角范圍為,所以 ,(2) 直線和平面所成角與向量與平面法向量夾角互余或相差,而直線和平面所成角范圍為,所以.
試題解析:
∵,又∵面面,面面,
,∴,∵BD∥AE,∴, 2分
如圖所示,以C為原點(diǎn),分別以CA,CB為x,y軸,以過(guò)點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系,∵,∴設(shè)各點(diǎn)坐標(biāo)為,,,,,
則,,,
,,.
(1),
則與所成角為. 5分
(2)設(shè)平面ODM的法向量,則由,且可得
令,則,,∴,設(shè)直線CD和平面ODM所成角為,則
,
∴直線CD和平面ODM所成角的正弦值為. 10分
考點(diǎn):利用空間向量求異面直線所成角及直線與平面所成角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線長(zhǎng)都等于1,點(diǎn)E,F,G分別是AB,AD,CD的中點(diǎn),計(jì)算:
(1)·.
(2)EG的長(zhǎng).
(3)異面直線EG與AC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的中點(diǎn).
(1)求證:B1E⊥AD1.
(2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(3)若二面角A-B1E-A1的大小為30°,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,底面, ,為的中點(diǎn),為的中點(diǎn).
(Ⅰ)證明:直線平面;
(Ⅱ)求異面直線與所成角的大小;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱錐SABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn).
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐中,底面為平行四邊形,側(cè)面面,已知
(Ⅰ)求證:;
(Ⅱ)在SB上選取點(diǎn)P,使SD//平面PAC ,并證明;
(Ⅲ)求直線與面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在棱長(zhǎng)為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點(diǎn)
(1)求直線AM和CN所成角的余弦值;
(2)若P為B1C1的中點(diǎn),求直線CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點(diǎn),且,當(dāng) B1D⊥面PMN時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com