若x=1是函數(shù)f(x)=(ax-2)•ex的一個(gè)極值點(diǎn),則a=
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),將x=1代入導(dǎo)函數(shù)求出a的值即可.
解答: 解;∵f′(x)=aex+(ax-2)ex,
∴f′(1)=ae+(a-2)e=0,
解得:a=1,
把a(bǔ)=1代入函數(shù)得:
f(x)=(x-2)•ex
∴f′(x)=ex+(x-2)ex
=ex(x-1),
∴f′(1)=0,
故a=1符號(hào)題意,
故答案為:1.
點(diǎn)評(píng):本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求函數(shù)的極值,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,垂足分別是D、E,則以A、B為焦點(diǎn)且過D、E的橢圓與雙曲線的離心率分別為e1,e2,則
1
e1
+
1
e2
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條拋物線的焦點(diǎn)的坐標(biāo)是(1,0),準(zhǔn)線的方程是x=-1,該拋物線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)棱長(zhǎng)為2的正方體,被一個(gè)平面截后所得幾何體的三視圖如圖所示,則該幾何體的上底面面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC內(nèi)有任意三點(diǎn)都不共線的2011個(gè)點(diǎn),加上A,B,C三個(gè)頂點(diǎn),共2014個(gè)點(diǎn),把這2014個(gè)點(diǎn)連線形成互不重疊的小三角形,則一共可以形成小三角形的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐的直觀圖及其俯視圖與側(cè)(左)視圖如圖,俯視圖是邊長(zhǎng)為2的正三角形,側(cè)(左)視圖是有一直角邊為2的直角三角形,則該三棱錐的正(主)視圖面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=3-x2與y=2x所圍成的圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=2n+1,設(shè)函數(shù)f(n)=
an,n為奇數(shù)
f(
n
2
),n為偶數(shù)
且cn=f(2n+4),n∈N*,則數(shù)列{cn}的前n項(xiàng)和Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
滿足:|
a
=
3
,|
b
|=1,
a
b
=-
3
2
,則向量
a
b
的夾角為( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

同步練習(xí)冊(cè)答案