A、B、C是球面上三點,已知弦AB=18 cm,BC=24 cm,AC=30 cm,平面ABC與球心的距離恰好為球半徑的一半,求球的表面積.

思路解析:求球的表面積就是求球的半徑、本例求球的半徑R的方法是列出R的方程、由方程解得R.

解:∵AB2+BC2=AC2,

∴△ABC是直角三角形.∴△ABC的外接圓圓心O1AC的中點上.

A、B、C三點的平面截球O得圓O1的半徑為R=15 cm.

在Rt△OO1C中,R2=()2+r2,∴R2=+152.∴R2=300.

S=4πR2=1 200π(cm2).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)如圖,設A、B、C是球O面上的三點,我們把大圓的劣弧
BC
、
CA
、
AB
在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設
BC
=a,
CA
=b,
AB
=c,a,b.c∈(0,π)
,二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若α=β=γ=
π
2
,則球面三角形ABC的面積為
π
2
;
②若a=b=c=
π
3
,則四面體OABC的側面積為
π
2
;
③圓弧
AB
在點A處的切線l1與圓弧
CA
在點A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認為正確的所有命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學 來源:必修二訓練數(shù)學北師版 北師版 題型:013

已知A、B、C是球O面上的三點,則下列命題中,真命題的個數(shù)是

①若AB=6,AC=8,BC=10,OA=10,則O到平面ABC的距離是5

②若∠BAC=90°,E是BC中點,AE=4,OE=3,則OA=5

③若∠BAC=60°,BC=4,OB=,則O到平面ABC的距離是

④若E是△ABC的BC邊上的中點且OE⊥平面ABC,則△ABC不一定是直角三角形

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2010年四川省成都市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

如圖,設A、B、C是球O面上的三點,我們把大圓的劣弧在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設,二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若,則球面三角形ABC的面積為
②若,則四面體OABC的側面積為;
③圓弧在點A處的切線l1與圓弧在點A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認為正確的所有命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2010年四川省成都市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,設A、B、C是球O面上的三點,我們把大圓的劣弧在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設,二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若,則球面三角形ABC的面積為;
②若,則四面體OABC的側面積為;
③圓弧在點A處的切線l1與圓弧在點A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認為正確的所有命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2010年安徽省宿州市靈璧中學高考壓軸數(shù)學試卷1(理科)(解析版) 題型:解答題

如圖,設A、B、C是球O面上的三點,我們把大圓的劣弧在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設,二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若,則球面三角形ABC的面積為;
②若,則四面體OABC的側面積為;
③圓弧在點A處的切線l1與圓弧在點A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認為正確的所有命題的序號是   

查看答案和解析>>

同步練習冊答案