【題目】從星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案種數(shù)為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若函數(shù)f(x)在處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實數(shù)b,使得關(guān)于x的不等式在上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)從高三男生中隨機抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.05 | |
第2組 | a | 0.35 | |
第3組 | 30 | b | |
第4組 | 20 | 0.20 | |
第5組 | 10 | 0.10 | |
合計 | n | 1.00 |
(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;
(2)為了能對學(xué)生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進行不同項目的體能測試,若在這7名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 圓為 的內(nèi)切圓.其中.
(1)求圓的方程及 點坐標(biāo);
(2)在直線 上是否存在異于的定點使得對圓上任意一點,都有為常數(shù) )?若存在,求出點 的坐標(biāo)及的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用一顆骰子連擲三次,投擲出的數(shù)字順次排成一個三位數(shù),此時:
(1)各位數(shù)字互不相同的三位數(shù)有多少個?
(2)可以排出多少個不同的數(shù)?
(3)恰好有兩個相同數(shù)字的三位數(shù)共有多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“垛積術(shù)”(隙積術(shù))是由北宋科學(xué)家沈括在《夢溪筆談》中首創(chuàng),南宋科學(xué)家楊輝、元代數(shù)學(xué)家朱世杰豐富和發(fā)展的一類數(shù)列求和方法,有菱草垛、方垛、三角垛等等,某倉庫中部分貨物堆放成“菱草垛”,自上而下,第一層1件,以后每一層比上一層多1件,最后一層是件,已知第一層貨物單價1萬元,從第二層起,貨物的單價是上一層單價的,若這堆貨物總價是萬元,則的值為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賓館在裝修時,為了美觀,欲將客房的窗戶設(shè)計成半徑為的圓形,并用四根木條將圓分成如圖所示的9個區(qū)域,其中四邊形為中心在圓心的矩形,現(xiàn)計劃將矩形區(qū)域設(shè)計為可推拉的窗口.
(1)若窗口為正方形,且面積大于(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為,求窗口面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的頂點為,左、右焦點分別為、,過點A且斜率為的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)M為橢圓C上一動點,是橢圓C長軸上的一個點,直線MQ與橢圓C的另一個交點為N,令,若t值與點M的位置無關(guān),則稱此時的點Q為“穩(wěn)定點”,試求出所有“穩(wěn)定點”,若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com