分析 (1)求出a的值,根據(jù)單調性的定義證明函數(shù)的單調性即可;
(2)由韋達定理求出x1+x2=bx1x2=1,問題轉化為只需m2+m+1≥(|x1-x2|)max=3,根據(jù)二次函數(shù)的性質求出m的范圍即可.
解答 解:(1)∵f(1)=3,∴a=1,
∴$f(x)=\frac{{2{x^2}+1}}{x}$,設x1,x2是[$\frac{{\sqrt{2}}}{2}$,+∞)上任意兩個實數(shù)且x1<x2,
則$f({x_1})-f({x_2})=2{x_1}+\frac{1}{x_1}-2{x_2}-\frac{1}{x_2}=2({x_1}-{x_2})+\frac{{{x_2}-{x_1}}}{{{x_1}{x_2}}}=({x_1}-{x_2})(2-\frac{1}{{{x_1}{x_2}}})$,
∵$\frac{{\sqrt{2}}}{2}≤{x_1}<{x_2}∴{x_1}{x_2}>x_1^2≥\frac{1}{2}∴0<\frac{1}{{{x_1}{x_2}}}<2∴2-\frac{1}{{{x_1}{x_2}}}>0$,
又x1-x2<0,∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),
∴函數(shù)f(x)在[$\frac{{\sqrt{2}}}{2}$,+∞)上單調遞增;
(2)∵f(x)=x+b∴x2-bx+1=0
由韋達定理:x1+x2=bx1x2=1,
∴$|{{x_1}-{x_2}}|=\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\sqrt{{b^2}-4}$,
又$2≤b≤\sqrt{13}∴0≤|{{x_1}-{x_2}}|≤3$,
假設存在實數(shù)m,使得不等式m2+m+1≥|x1-x2|對任意的$b∈[{2,\sqrt{13}}]$恒成立,
則只需m2+m+1≥(|x1-x2|)max=3,
∴m2+m+1≥3,m2+m-2≥0,
而m2+m-2=0的兩根為m=-2或m=1,
結合二次函數(shù)的性質有:m≤-2或m≥1,
故存在滿足題意的實數(shù)m,且m的取值范圍為:m≤-2或m≥1.
點評 本題考查了函數(shù)的單調性、最值問題,考查二次函數(shù)的性質以及轉化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com