【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)P為拋物線C上一點(diǎn),,O為坐標(biāo)原點(diǎn),.
(1)求拋物線C的方程;
(2)設(shè)Q為拋物線C的準(zhǔn)線上一點(diǎn),過點(diǎn)F且垂直于OQ的直線交拋物線C于A,B兩點(diǎn)記,的面積分別為,求的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)可知直線的傾斜角為,再利用幾何關(guān)系求得,代入拋物線方程化簡即可.
(2)設(shè)直線的方程為,再分別計(jì)算關(guān)于的表達(dá)式,進(jìn)而求得關(guān)于的表達(dá)式再求范圍即可.
解:(1)由題可知,直線的傾斜角為,故,
代入方程可得,化簡得,因?yàn)?/span>所以
故拋物線C的方程為
(2)顯然直線斜率不為0,故設(shè)直線的方程為,
聯(lián)立.設(shè).則,.所以
設(shè)則因?yàn)橹本垂直于OQ.故.所以
又到直線:的距離.
故.
故.
設(shè),則
當(dāng)且僅當(dāng)即時(shí)取等號.又,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣,為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲2000個(gè)點(diǎn),己知恰有800個(gè)點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,再將所得圖象向右平移個(gè)單位,若得到的圖象關(guān)于原點(diǎn)對稱,則當(dāng)時(shí),的值域?yàn)? )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的棱長均為2,O為AC的中點(diǎn),平面A'OB⊥平面ABC,平面⊥平面ABC.
(1)求證:A'O⊥平面ABC;
(2)求二面角A﹣BC﹣C'的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是( )
A.12個(gè)月的PMI值不低于50%的頻率為
B.12個(gè)月的PMI值的平均值低于50%
C.12個(gè)月的PMI值的眾數(shù)為49.4%
D.12個(gè)月的PMI值的中位數(shù)為50.3%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線方程為,求實(shí)數(shù),的值;
(2)若函數(shù)在和兩處取得極值,求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側(cè),求的取值集合;
(3)對于,,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com