如圖,正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為2,高為4,那么異面直線BD1與AD所成角的正切值( 。
A、
3
B、2
C、
5
D、
6
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:連結(jié)BA1,由AD∥A1D1,知∠BD1A1是異面直線BD1與AD所成角,由此能求出異面直線BD1與AD所成角的正切值.
解答: 解:連結(jié)BA1,
∵正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為2,高為4,
∴AD∥A1D1,∴∠BD1A1是異面直線BD1與AD所成角,
∵A1D1⊥A1B,A1B=
22+42
=2
5

∴tan∠BD1A1=
A1B
A1D1
=
2
5
2
=
5
,
∴異面直線BD1與AD所成角的正切值為
5

故選:C.
點(diǎn)評(píng):本題考查異面直線BD1與AD所成角的正切值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+2ax+3ln(2x+1)在(0,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
3+cosx
1-2cosx
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
、
b
滿足|
a
|=
2
,|
a
-
b
|=
5
,(
a
b
)=
π
4
,則|
b
|等于( 。
A、2
B、
3
C、3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四面體的相對(duì)棱分別相等,分別為
5
,
13
10
,則該四面體的內(nèi)切球與外接球的半徑之比
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為測(cè)量地面上B,C兩點(diǎn)間的距離,在高100m的建筑物頂部選點(diǎn)A,在A出測(cè)得點(diǎn)B,C的俯角分別為30°和45°(B,C與建筑物底部在同一水平面上),且∠BAC=45°,則B,C之間的距離為(  )
A、100m
B、100
2
m
C、100
3
m
D、200m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)某類人群進(jìn)行心里障礙測(cè)試,用簡(jiǎn)單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表
 焦慮說(shuō)謊懶惰
女性5 15
男性2010 
已知樣本中女性人數(shù)與男性人數(shù)之比是3:8
(1)分別求出女性中的說(shuō)謊人數(shù)和男性中的懶惰人數(shù)
(2)用獨(dú)立性檢驗(yàn)的思想方法說(shuō)明在這三種心里障礙中哪一種與性別關(guān)系最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:y=
1
3
x3-2x2+3x+3,
(1)求函數(shù)在點(diǎn)(0,3)處的切線方程;
(2)求曲線C在定義域范圍的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前10項(xiàng)和S10=10,前20項(xiàng)和S20=30,求S30

查看答案和解析>>

同步練習(xí)冊(cè)答案