已知F為拋物線C:y=x2的焦點,A(x1,y1),B(x2,y2)是拋物線C上的兩點,且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時,直線AB與拋物線C所圍成的圖形的面積最。吭撁娣e的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點M的軌跡方程.
(1)由題知,拋物線C的焦點F(0,
1
4
),A(x1
x21
),B(x2,
x22
),所以
FA
=(x1
x21
-
1
4
),
FB
=(x2,
x22
-
1
4
)

因為
FA
FB
,所以
FA
FB
共線,即
x1(
x22
-
1
4
)-x2(
x21
-
1
4
)=0
,
即(x2-x1)(x1x2+
1
4
)=0

因為x1<x2,所以x1x2=-
1
4
.(2分)
由題設條件x1<x2知,直線AB的斜率k一定存在,且
k=
y2-y1
x2-x1
=
x22
-
x21
x2-x1
=x1+x2
.(3分)
設直線AB的方程為y=kx+
1
4
,則直線AB與拋物線C所圍的面積
S=
x2x1
(kx+
1
4
-x2)dx=(-
1
3
x3+
k
2
x2+
1
4
x)
|x2x1

=(-
1
3
x32
+
k
2
x22
+
1
4
x2)-(-
1
3
x31
+
k
2
x21
+
1
4
x1)

=-
1
3
(
x32
-
x31
)+
k
2
(
x22
-
x21
)+
1
4
(x2-x1)

=(x2-x1)[-
1
3
(
x22
+x2x1+
x21
)+
k
2
(x2+x1)+
1
4
]

=
(x2+x1)2-4x2x1
[-
1
3
(x2+x1)2+
1
3
x2x1+
k
2
(x2+x1)+
1
4
]

=
k2+1
[-
1
3
k2-
1
3
×
1
4
+
k
2
•k+
1
4
]


=
1
6
(k2+1)
k2+1
1
6
,
當且僅當k=0,即x1=-x2,即λ=-1時,Smin=
1
6
.(5分)
(2)由題知A(x1,x12),B(x2,x22),且x1<x2,則直線AB的斜率kAB=
y2-y1
x2-x1
=
x21
-
x22
x2-x1
=x1+x2

設直線AB的方程為y-x12=k(x-x1),即y=(x1+x2)x-x1x2,
則直線AB與拋物線C所圍的面積
S=
x2x1
[(x1+x2)x-x1x2-x2]dx

=(
x1+x2
2
x2-x1x2x-
1
3
x3)
|x2x1
=
1
6
(x2-x1)3
,
因為S=
4
3
,所以
1
6
(x2-x1)3=
4
3
,得x2-x1
=2.(8分)設M(x,y),則x=
x1+x2
2
=x1
+1,
y=
y1+y2
2
=
x21
+
x22
2
=
x21
+2x1+2=(x1+1)2
+1,
所以y=x2+1.
故點M的軌跡方程為y=x2+1.(10分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F為拋物線C:y=x2的焦點,A(x1,y1),B(x2,y2)是拋物線C上的兩點,且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時,直線AB與拋物線C所圍成的圖形的面積最小?該面積的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興一模)已知F為拋物線C:y2=4x焦點,其準線交x軸于點M,點N是拋物線C上一點
(Ⅰ)如圖1,若MN的中垂線恰好過焦點F,求點N的y軸的距離
(Ⅱ)如圖2,已知直線l交拋物線C于點P,Q,若在拋物線C上存在點R,使FPRQ為平行四邊形,試探究直線l是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省杭州市富陽市場口中學高二(下)3月月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知F為拋物線C:y2=4x焦點,其準線交x軸于點M,點N是拋物線C上一點
(Ⅰ)如圖1,若MN的中垂線恰好過焦點F,求點N的y軸的距離
(Ⅱ)如圖2,已知直線l交拋物線C于點P,Q,若在拋物線C上存在點R,使FPRQ為平行四邊形,試探究直線l是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年江蘇省海安高級中學、南京外國語學校、金陵中學高三第三次調(diào)研數(shù)學試卷(解析版) 題型:解答題

已知F為拋物線C:y=x2的焦點,A(x1,y1),B(x2,y2)是拋物線C上的兩點,且x1<x2
(1)若為何值時,直線AB與拋物線C所圍成的圖形的面積最。吭撁娣e的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為,求線段AB的中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案