2.求圓x2-2x+y2+10y-5=0的圓心和半徑.

分析 把圓的一般方程化為標(biāo)準(zhǔn)方程,可得圓心和半徑.

解答 解:圓x2-2x+y2+10y-5=0,即(x-1)2 +(y+5)2 =31,表示以(1,-5)為圓心、半徑等于$\sqrt{31}$的圓,
故圓x2-2x+y2+10y-5=0的圓心為(1,-5),半徑為$\sqrt{31}$.

點(diǎn)評(píng) 本題主要考查圓的一般方程和標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知集合P={x||x|<1},Q={x|x2-2<0,x∈Z},則P∩Q={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC中,已知A(2,1),B(-2,3),C(0,1),則BC邊上的中線(xiàn)所在的直線(xiàn)的一般式方程為x+3y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=f(x)的定義域?yàn)椋?,+∞),f(8)=3,對(duì)任意正數(shù)x1,x2,都有f(x1x2)=f(x1)+f(x2),猜想y=f(x)的表達(dá)式為( 。
A.f(x)=2xB.$f(x)=\frac{3}{8}x$C.f(x)=log2xD.f(x)=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足$\frac{_{n}}{{a}_{n}}$=$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.直線(xiàn)x+y-2=0和ax-y+1=0的夾角為$\frac{π}{3}$,則a的值為2±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x),a≥0.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)若?x>0,f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線(xiàn)2x+ay-1=0與直線(xiàn)ax+(2a-1)y+3=0垂直,則a=( 。
A.-$\frac{1}{2}$B.0C.-$\frac{1}{2}$或0D.-2或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一個(gè)焦點(diǎn)恰好與拋物線(xiàn)y2=8x的焦點(diǎn)重合,則雙曲線(xiàn)的漸近線(xiàn)方程為y=±$\sqrt{3}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案