已知函數(shù),xÎR.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標先縮短到原來的,把所得到的圖象再向左平移單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最小值.  

(1)=,遞增區(qū)間為;(2)

解析試題分析:(Ⅰ)先用正弦、余弦二倍角公式將角統(tǒng)一,再用化一公式,將整理成的形式。根據(jù)公式求周期,將角視為整體,代入正弦的單調(diào)增區(qū)間,即可求得的范圍,即的單調(diào)遞增區(qū)間。(Ⅱ)由(Ⅰ)知,函數(shù)的圖象上各點的縱坐標保持不變,橫坐標先縮短到原來的得到的圖像,再向左平移單位得到的圖像。根據(jù)的范圍,求整體角的范圍,再根據(jù)正弦函數(shù)圖像求的范圍,即可求得函數(shù)在區(qū)間上的最小值。
試題解析:解:(1)因為
=                                       4分
函數(shù)f(x)的最小正周期為=.                       6分
,,
得f(x)的單調(diào)遞增區(qū)間為 , .                  8分
(2)根據(jù)條件得=,當(dāng)時,,
所以當(dāng)x=時,.                         12分
考點:1正弦、余弦二倍角公式、化一公式;2三角函數(shù)伸縮平移變換;3三角函數(shù)的單調(diào)區(qū)間及最值;4三角函數(shù)圖像。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=(弦´矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.
按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于9米的弧田.

(1)計算弧田的實際面積;
(2)按照《九章算術(shù)》中弧田面積的經(jīng)驗公式計算所得結(jié)果與(1)中計算的弧田實際面積相差多少平方米?(結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m=(2cos x+2sin x,1),n=(cos x,-y),且mn.
(1)將y表示為x的函數(shù)f(x),并求f(x)的單調(diào)增區(qū)間;
(2)已知a,b,c分別為△ABC的三個內(nèi)角A,BC對應(yīng)的邊長,若f=3,且a=2,bc=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量向量
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中)的部分圖象如圖所示.

(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)求方程的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)上的最小值,并寫出取最小值時相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,分別為角的對邊,的面積S滿足
(Ⅰ)求角A的值;
(Ⅱ)若,設(shè)角B的大小為x,用x表示c,并求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.

(1)求的最小值及取最小值時的集合;
(2)求時的值域;
(3)在給出的直角坐標系中,請畫出在區(qū)間上的圖像(要求列表,描點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=tan.
(1)求f的值;
(2)設(shè)α,若f=2,求cos的值.

查看答案和解析>>

同步練習(xí)冊答案