已知點(diǎn)P(2,-3),Q(3,2),直線ax+y+2=0與線段PQ相交,則實(shí)數(shù)a的取值范圍是
[-
4
3
,
1
2
]
[-
4
3
,
1
2
]
分析:分別求出直線MQ、MP的斜率,進(jìn)而即可求出直線MN的斜率的取值范圍.
解答:解:畫出圖象:
kMQ=
-2-2
0-3
=
4
3
,

kMP=
-2-(-3)
0-2
=-
1
2

要使直線ax+y+2=0與線段PQ相交,
則滿足-
1
2
kMN
4
3

-
1
2
≤-a≤
4
3
,
-
4
3
≤a≤
1
2

故答案為[-
4
3
1
2
]
點(diǎn)評(píng):正確理解直線相交與直線的斜率的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,-3)是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
上一點(diǎn),雙曲線兩個(gè)焦點(diǎn)間的距離等于4,則該雙曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求與直線6x+8y-5=0垂直,且與原點(diǎn)的距離為2的直線方程.
(2)已知點(diǎn)P(2,-3),直線l:x-y+2=0,點(diǎn)P與點(diǎn)Q關(guān)于直線l對(duì)稱,求經(jīng)過(guò)點(diǎn)Q且平行于直線x-2y-3=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,-3),Q(3,2),若直線ax-y+2=0與線段PQ相交,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,3),直線l:x-y+1=0,動(dòng)點(diǎn)M到點(diǎn)P的距離與動(dòng)點(diǎn)M到直線l的距離相等,則動(dòng)點(diǎn)M的軌跡為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過(guò)點(diǎn)P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案