【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓的離心率為,過(guò)作軸的垂線與橢圓交于兩點(diǎn),且,動(dòng)點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的左、右頂點(diǎn)分別為,且直線的斜率分別與直線(為坐標(biāo)原點(diǎn))的斜率相同,動(dòng)點(diǎn)不與重合,求的面積.
【答案】(1);(2).
【解析】
(1)根據(jù)離心率以及通徑的長(zhǎng)度,建立的方程組,求解方程組即可得到結(jié)果;
(2)根據(jù)點(diǎn)在橢圓上,可推導(dǎo)出為定值;分類(lèi)討論直線的斜率,當(dāng)斜率存在時(shí),設(shè)出直線的方程,聯(lián)立橢圓方程,由,得到之間的關(guān)系;再求弦長(zhǎng)以及原點(diǎn)到直線的距離,結(jié)合之間的關(guān)系,即可容易得到結(jié)果.
(1)聯(lián)立方程得解得,
故,即,
又,,
所以,
故橢圓C的標(biāo)準(zhǔn)方程為.
(2)由(1)知,,設(shè),
則,
又,即,
所以,所以.
當(dāng)直線的斜率不存在時(shí),
直線的斜率分別為或,
不妨設(shè)直線的方程是,
由得,.
取,則,
所以的面積為.
當(dāng)直線的斜率存在時(shí),設(shè)方程為.
由得.
因?yàn)?/span>在橢圓上,所以,
解得.
設(shè),,則,.
所以
.
設(shè)點(diǎn)到直線的距離為,則.
所以的面積為①
因?yàn)?/span>,
所以
由,得, ②
由①②,得.
綜上所述,的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面平面,四邊形和都是邊長(zhǎng)為2的正方形,點(diǎn),分別是,的中點(diǎn),二面角的大小為60°.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)的在商場(chǎng)收集了100位顧客購(gòu)物的相關(guān)數(shù)據(jù),整理如下:
一次購(gòu)物款(單位:元) | [0,50) | [50,100) | [100,150) | [150,200) | [200,+∞) |
顧客人數(shù) | m | 20 | 30 | n | 10 |
統(tǒng)計(jì)結(jié)果顯示100位顧客中購(gòu)物款不低于100元的顧客占60%,據(jù)統(tǒng)計(jì)該商場(chǎng)每日大約有5000名顧客,為了增加商場(chǎng)銷(xiāo)售額度,對(duì)一次性購(gòu)物不低于100元的顧客發(fā)放紀(jì)念品(每人一件).(注:視頻率為概率)
(1)試確定的值,并估計(jì)該商場(chǎng)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(2)為了迎接店慶,商場(chǎng)進(jìn)行讓利活動(dòng),一次購(gòu)物款200元及以上的一次返利30元;一次性購(gòu)物
款小于200元的按購(gòu)物款的百分比返利,具體見(jiàn)下表:
一次購(gòu)物款(單位:元) | [0,50) | [50,100) | [100,150) | [150,200) |
返利百分比 | 0 | 6% | 8% | 10% |
估計(jì)該商場(chǎng)日均讓利多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是某市中心一邊長(zhǎng)為百米的正方形地塊的平面示意圖. 現(xiàn)計(jì)劃在該地塊上劃分四個(gè)完全相同的直角三角形(即和),且在這四個(gè)直角三角形區(qū)域內(nèi)進(jìn)行綠化,中間的小正方形修建成市民健身廣場(chǎng),為了方便市民到達(dá)健身廣場(chǎng),擬修建條路. 已知在直角三角形內(nèi)進(jìn)行綠化每1萬(wàn)平方米的費(fèi)用為元,中間小正方形修建廣場(chǎng)每1萬(wàn)平方米的費(fèi)用為元,修路每1百米的費(fèi)用為元,其中為正常數(shù).設(shè),.
(1)用表示該工程的總造價(jià);
(2)當(dāng)為何值時(shí),該工程的總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若不等式對(duì),恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)可用有序?qū)崝?shù)對(duì)表示,用綜合指標(biāo)評(píng)價(jià)該產(chǎn)品的等級(jí).若,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號(hào) | |||||
產(chǎn)品指標(biāo) | |||||
產(chǎn)品編號(hào) | |||||
產(chǎn)品指標(biāo) |
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)都等于4”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值構(gòu)成的集合為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線與直線分別與橢圓交于點(diǎn),且四邊形的面積為.
(1)求橢圓的方程;
(2)過(guò)橢圓上一點(diǎn)作橢圓的切線,設(shè)直線與橢圓相較于,兩點(diǎn),為坐標(biāo)原點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)
(1)證明:;
(2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com