【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為 , ,f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論: ①當(dāng)x>1時,甲走在最前面;
②當(dāng)x>1時,乙走在最前面;
③當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分).

【答案】③④⑤
【解析】解:路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系是:

, ,f3(x)=x,f4(x)=log2(x+1),

它們相應(yīng)的函數(shù)模型分別是指數(shù)型函數(shù),二次函數(shù),一次函數(shù),和對數(shù)型函數(shù)模型.

當(dāng)x=2時,f1(2)=3,f2(2)=4,∴命題①不正確;

當(dāng)x=4時,f1(5)=31,f2(5)=25,∴命題②不正確;

根據(jù)四種函數(shù)的變化特點,對數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時甲、乙、丙、丁四個物體又重合,從而可知當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最后面,

命題③正確;

指數(shù)函數(shù)變化是先慢后快,當(dāng)運動的時間足夠長,最前面的動物一定是按照指數(shù)型函數(shù)運動的物體,即一定是甲物體,∴命題⑤正確.

結(jié)合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,命題④正確.

所以答案是:③④⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.奇函數(shù)f(x)的圖象經(jīng)過(0,0)點
B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函數(shù)
C.冪函數(shù)y=x 過(1,1)點
D.y=sin2x(x∈[0,5π])是以π為周期的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知R(x0 , y0)是橢圓C: =1上的一點,從原點O向圓R:(x﹣x02+(y﹣y02=8作兩條切線,分別交橢圓于點P,Q.
(1)若R點在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1 , k2 , 求k1k2的值;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心在直線x﹣2y+4=0上,且與x軸交于兩點A(﹣5,0),B(1,0). (Ⅰ)求圓M的方程;
(Ⅱ)求過點C(1,2)的圓M的切線方程;
(Ⅲ)已知D(﹣3,4),點P在圓M上運動,求以AD,AP為一組鄰邊的平行四邊形的另一個頂點Q軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是由滿足下列性質(zhì)的函數(shù)f(x)的全體所組成的集合:在定義域內(nèi)存在x0 , 使得f(x0+1)=f(x0)+f(1)成立.
(1)指出函數(shù)f(x)= 是否屬于M,并說明理由;
(2)設(shè)函數(shù)f(x)=lg 屬于M,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.

(1)證明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小為60°,求∠BDC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fk(x)=ax+ka﹣x , (k∈Z,a>0且a≠1). (Ⅰ)若f1(1)=3,求f1 )的值;
(Ⅱ)若fk(x)為定義在R上的奇函數(shù),且a>1,是否存在實數(shù)λ,使得fk(cos2x)+fk(2λsinx﹣5)<0對任意x∈[0, ]恒成立,若存在,請求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加抽獎,抽獎有兩種方案可供選擇. 方案一:從裝有4個紅球和2個白球的不透明箱中,隨機摸出2個球,若摸出的2個球都是紅球則中獎,否則不中獎;
方案二:擲2顆骰子,如果出現(xiàn)的點數(shù)至少有一個為4則中獎,否則不中獎.(注:骰子(或球)的大小、形狀、質(zhì)地均相同)
(Ⅰ)有顧客認(rèn)為,在方案一種,箱子中的紅球個數(shù)比白球個數(shù)多,所以中獎的概率大于 .你認(rèn)為正確嗎?請說明理由;
(Ⅱ)如果是你參加抽獎,你會選擇哪種方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個單位,得到的圖象對應(yīng)的解析式是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案