【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財工具也多了起來,為了研究某種理財工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組,,,,,,并整理得到頻率分布直方圖:
(Ⅰ)求圖中的值;
(Ⅱ)求被調(diào)查人員的年齡的中位數(shù)和平均數(shù);
(Ⅲ)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,在抽取的8人中隨機(jī)抽取2人,則這2人都來自于第三組的概率是多少?
【答案】(Ⅰ);(Ⅱ)中位數(shù)46.250;平均數(shù)47;(Ⅲ).
【解析】
(Ⅰ)由題意得到關(guān)于a的方程,解方程即可確定實數(shù)a的值;
(Ⅱ)利用中位數(shù)將頻率分布直方圖分為左右兩側(cè)面積相等的兩部分可得中位數(shù)的值,然后利用平均數(shù)公式計算年齡的平均數(shù)即可;
(Ⅲ)由題意首先確定每組所抽取的人數(shù),然后列出所有可能的事件,最后利用古典概型計算公式可得滿足題意的概率值.
(Ⅰ)由頻率分布直方圖的性質(zhì)可得,
解得.
(Ⅱ)中位數(shù)為,
平均數(shù)為;
(Ⅲ)第二組、第三組、第四組的頻率比為,共抽取8人,所以三個組依次抽取的人數(shù)為2,4,2.
記第二組2人分別為,,第三組4人分別為,,,,第四組2人分別為,
從8人中抽取兩人共包含:
,,,,,,,
,,,,,,
,,,,,
,,,,
,,,
,,,共28個基本事件,
而兩人都來自于第三組的基本事件包括:
,,,,,,共6個.
設(shè)這2人都來自于第三組為事件,則所求概率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到100萬元的投資收益,現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:①獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加;②獎金不超過9萬元;③獎金不超過投資收益的20%.
(1)若建立函數(shù)模型制定獎勵方案,試用數(shù)學(xué)語言表述該公司對獎勵函數(shù)模型的基本要求,并分析函數(shù) 是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)作為獎勵函數(shù)模型,試確定最小的正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考慮下面兩個定義域為(0,+∞)的函數(shù)f(x)的集合:對任何不同的兩個正數(shù),都有,=對任何不同的兩個正數(shù),都有
(1)已知,若,且,求實數(shù)和的取值范圍
(2)已知,且的部分函數(shù)值由下表給出:
比較與4的大小關(guān)系
(3)對于定義域為的函數(shù),若存在常數(shù),使得不等式對任何都成立,則稱為的上界,將中所有存在上界的函數(shù)組成的集合記作,判斷是否存在常數(shù),使得對任何和,都有,若存在,求出的最小值,若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設(shè)每年的梅雨季節(jié)天氣相互獨(dú)立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李分析,他來年應(yīng)該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于正三角形,挖去以三邊中點(diǎn)為頂點(diǎn)的小正三角形,得到一個新的圖形,這樣的過程稱為一次“鏤空操作“,設(shè)是一個邊長為1的正三角形,第一次“鏤空操作”后得到圖1,對剩下的3個小正三角形各進(jìn)行一次“鏤空操作”后得到圖2,對剩下的小三角形重復(fù)進(jìn)行上述操作,設(shè)是第次挖去的小三角形面積之和(如是第1次挖去的中間小三角形面積,是第2次挖去的三個小三角形面積之和),是前次挖去的所有三角形的面積之和,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為拋物線的焦點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn).
(1)若,求此時直線的方程;
(2)若與直線垂直的直線過點(diǎn),且與拋物線相交于點(diǎn)、,設(shè)線段、的中點(diǎn)分別為、,如圖,求證:直線過定點(diǎn);
(3)設(shè)拋物線上的點(diǎn)、在其準(zhǔn)線上的射影分別為、,若△的面積是△的面積的兩倍,如圖,求線段中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,拋物線上存在一點(diǎn)到焦點(diǎn)的距離等于3.
(1)求拋物線的方程;
(2)過點(diǎn)的直線交拋物線于,兩點(diǎn),以線段為直徑的圓交軸于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為;圓過橢圓的三個頂點(diǎn).過點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com