【題目】已知點與的距離和它到直線的距離的比是常數(shù).
求點M的軌跡C的方程;
設N是圓E:上位于第四象限的一點,過N作圓E的切線,與曲線C交于A,B兩點求證:的周長為10.
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)技術的快速發(fā)展,共享經(jīng)濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農(nóng)家樂”跟蹤調查了天.得到的統(tǒng)計數(shù)據(jù)如下表,為收費標準(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費標準與“入住率”的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農(nóng)家樂”中隨機抽取兩家深入調查,記為“入住率”超過的農(nóng)家樂的個數(shù),求的概率分布列;
(2)令,由散點圖判斷與哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據(jù)你的判斷結果求回歸方程.(結果保留一位小數(shù))
(3)若一年按天計算,試估計收費標準為多少時,年銷售額最大?(年銷售額入住率收費標準)
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是平面內(nèi)互不平行的三個向量,,有下列命題:
①方程不可能有兩個不同的實數(shù)解;
②方程有實數(shù)解的充要條件是;
③方程有唯一的實數(shù)解;
④方程沒有實數(shù)解.
其中真命題有 .(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點,三棱錐的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點D,當D在什么位置時,和的夾角大小為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體中,E是棱的中點.
(1)畫出平面與平面的交線;
(2)在棱上是否存在一點F,使得∥平面若存在,指明點F的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=,下列結論中錯誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對稱圖形
C. 若是f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調遞減
D. 若是f(x)的極值點,則()=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-ax-alnx(a∈R).
(1)若函數(shù)f(x)在x=1處取得極值,求a的值;
(2)在(1)的條件下,求證:f(x)≥-+-4x+.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:上一點到焦點的距離為4,動直線交拋物線于坐標原點O和點A,交拋物線的準線于點B,若動點P滿足,動點P的軌跡C的方程為.
(1)求出拋物線的標準方程;
(2)求動點P的軌跡方程;
(3)以下給出曲線C的四個方面的性質,請你選擇其中的三個方面進行研究:①對稱性;②范圍;③漸近線;④時,寫出由確定的函數(shù)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點外賣現(xiàn)已成為上班族解決午餐問題的一種流行趨勢.某配餐店為擴大品牌影響力,決定對新顧客實行讓利促銷,規(guī)定:凡點餐的新顧客均可獲贈10元或者16元代金券一張,中獎率分別為和,每人限點一餐,且100%中獎.現(xiàn)有A公司甲、乙、丙、丁四位員工決定點餐試吃.
(Ⅰ) 求這四人中至多一人抽到16元代金券的概率;
(Ⅱ) 這四人中抽到10元、16元代金券的人數(shù)分別用、表示,記,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com