一動圓截直線和直線所得弦長分別為,求動圓圓心的軌跡方程。

解析試題分析:設(shè)動圓圓心為M,由動圓截兩直線所得的弦長,結(jié)合點到直線的距離公式,根據(jù)半徑相等列關(guān)于動圓圓心坐標的關(guān)系式,整理后得答案.
試題解析:設(shè)動圓圓心點的坐標為,分別截直線
所得弦分別為,則
,過分別作直線的垂線,垂足分別為,則,,
, ,所以動圓圓心的軌跡方程是.
考點:軌跡方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓G:+y2=1.過軸上的動點(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點.
(1)求橢圓G上的點到直線的最大距離;
(2)①當(dāng)實數(shù)時,求A,B兩點坐標;
②將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,點,直線.
 
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上的任一點,都有為一常數(shù),試求出所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于.求動點M的軌跡方程,并說明它表示什么.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

內(nèi)有一點,為過點且傾斜角為的弦.

(1)當(dāng)時,求;
(2)當(dāng)弦被點平分時,求出直線的方程;
(3)設(shè)過點的弦的中點為,求點的坐標所滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心與點關(guān)于直線對稱,直線與圓相交于兩點,且,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.

(1)求實數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知半徑為2,圓心在直線上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過點A(2,2)且與軸相切時,求圓C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圓C上存在點Q,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案