【題目】商店出售一種成本為40元/千克的產(chǎn)品,據(jù)市場分析,若按50元/千克銷售,一個月能售出500千克,銷售單價每漲1元,月銷售量就減少10千克,設(shè)銷售單價為元/千克,月銷售利潤為.

(1)當(dāng)銷售單價定為55元/千克時,計算銷售量和月銷售利潤;

(2)求之間的函數(shù)關(guān)系式,并說明當(dāng)銷售單價應(yīng)定為多少時,月銷售利潤最大?最大利潤是多少?

【答案】(1)當(dāng)時,月銷售量為450千克,銷售利潤為6750元;(2),當(dāng)時,.

【解析】

1)由售價可得銷售量,從而可得利潤;

2)由月銷量乘以單件利潤可得總利潤,由二次函數(shù)性質(zhì)可得最大值.

(1)由題意,得:當(dāng)時,月銷售量為:(千克);

銷售利潤為:(元).

2

∴當(dāng)..

答:(1)當(dāng)時,月銷售量為450千克,銷售利潤為6750元;

(2),當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,E,F分別為ABCD的中點,,MDF中點.現(xiàn)將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,

1)證明:

2)求二面角E-BC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體育老師隨機調(diào)查了100名同學(xué),詢問他們最喜歡的球類運動,統(tǒng)計數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.

最喜歡的球類運動

足球

籃球

排球

乒乓球

羽毛球

網(wǎng)球

人數(shù)

a

20

10

15

b

5

1)求的值;

2)將足球、籃球、排球統(tǒng)稱為大球,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學(xué)中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,都是各項為正數(shù)的數(shù)列,且.對任意的正整數(shù)n,都有,,成等差數(shù)列,,,成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若存在p>0,使得集合M=恰有一個元素,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,APCD,ADBC,AB=BC=1,AD=2,E,F(xiàn)分別為AD,PC的中點.求證:

(1)AP∥平面BEF;

(2)平面BEF⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,某地區(qū)有300萬從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均年收入6000元,為了增加農(nóng)民的收入,當(dāng)?shù)卣e極引進資本,建立各種加工企業(yè),對當(dāng)?shù)氐霓r(nóng)產(chǎn)品進行深加工,同時吸收當(dāng)?shù)夭糠洲r(nóng)民進入加工企業(yè)工作,據(jù)估計,如果有萬人進企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均年收入有望提高,而進入企業(yè)工作的農(nóng)民的人均年收入為元.

1)在建立加工企業(yè)后,多少農(nóng)民進入企業(yè)工作,能夠使剩下從事傳統(tǒng)農(nóng)業(yè)農(nóng)民的總收入最大,并求出最大值;

2)為了保證傳統(tǒng)農(nóng)業(yè)的順利進行,限制農(nóng)民加入加工企業(yè)的人數(shù)不能超過總?cè)藬?shù)的,當(dāng)?shù)卣绾我龑?dǎo)農(nóng)民,即取何值時,能使300萬農(nóng)民的年總收入最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖象上存在關(guān)于直線對稱的不同兩點,則稱具有性質(zhì).已知為常數(shù),函數(shù),對于命題:①存在,使得具有性質(zhì);②存在,使得具有性質(zhì),下列判斷正確的是( )

A.①和②均為真命題B.①和②均是假命題

C.①是真命題,②是假命題D.①是假命題,②是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形中,,的中點.,分別是、上的動點,且,設(shè)),沿將梯形翻折,使平面平面,如圖.

1)當(dāng)時,求證:;

2)若以、為頂點的三棱錐的體積記為,求的最大值;

3)當(dāng)取得最大值時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案