解:(I)證明:連接PM,假設(shè)直線PM∥平面A′AB
∵PM?平面A′BC,平面A′BC∩平面A′AB=A′B
∴PM∥A′B
又∵M(jìn)為BC的中點(diǎn),故P為A′C的中點(diǎn)
∵AA′⊥平面ABC,CC′⊥平面ABC
AA′∥CC′
∴
∴
∴h
1=h
2與h
1>h
2矛盾
假設(shè)錯(cuò)誤,所以直線PM與平面A′AB不平行
(II)(法一)連接BO,則BO⊥AC
∵A′A⊥平面ABC,∴平面A′ACC′⊥平面ABC
∵平面ABC∩平面A′ACC′=AC
∴BO⊥平面A′ACC′
在平面A′ACC′內(nèi)過(guò)O作A′C′的垂線,垂足為D,連接OD,則∠BDO為二面角B-A′C′-A的平面角
∴∠BDO=45°∴△BDO為等腰直角三角形,OD=
∵
且∠A′AO=∠A′DO=90°
∴Rt△A′AO≌Rt△A′DO∴A′D=2同理得C′D=h
2則由勾股定理可得
∴h
2=1
又直線OP與平面A′BP所成的角即直線OP與平面A′BC所成的角,設(shè)為α,設(shè)點(diǎn)O到平面A′BC的距離為h
o,
點(diǎn)P到平面ABC的距離為h
p則
,S
△OBC=1
由等體積法可得
在平面A′ACC′內(nèi)可求得OP=
,∴
所以直線OP與平面A′BP所成的角為60°.
分析:(I)由要證明的結(jié)論的特點(diǎn),考慮利用反證法:假設(shè)直線PM∥平面A′AB可得PM∥A′B,又M為BC的中點(diǎn),故可得P為A′C的中點(diǎn),又AA′∥CC
'可得與h
1>h
2矛盾
(II)連接BO,則BO⊥AC由A′A⊥平面ABC可得平面A′ACC′⊥平面ABC,則BO⊥平面A′ACC',在平面A′ACC′內(nèi)過(guò)O作A′C′的垂線,垂足為D,連接OD,則∠BDO為二面角B-A′C′-A的平面角,結(jié)合已知條件可求
點(diǎn)評(píng):本題主要考查了利用反證法證明數(shù)學(xué)命題應(yīng)用,反證法的關(guān)鍵是要由假設(shè)進(jìn)行邏輯推理,從而得出矛盾,還考查了直線與平面所成的角的求解,解題中要注意利用等體積求解距離的方法的應(yīng)用.