14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4x-6,x<2}\\{{x}^{2}-2ax,x≥2}\end{array}\right.$是R上的增函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{2}$].

分析 由條件利用函數(shù)的單調(diào)性的性質(zhì)可得$\left\{\begin{array}{l}{a≤2}\\{4-4a≥8-6}\end{array}\right.$,由此求得a的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{4x-6,x<2}\\{{x}^{2}-2ax,x≥2}\end{array}\right.$是R上的增函數(shù),
∴$\left\{\begin{array}{l}{a≤2}\\{4-4a≥8-6}\end{array}\right.$,∴a≤$\frac{1}{2}$,
故答案為:$({-∞,\frac{1}{2}}]$.

點(diǎn)評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果直線l1:4ax+y+2=0與直線l2:(1-3a)x+ay-2=0平行,那么直線l2在y軸上的截距為( 。
A.8B.-8C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式ax2+bx+c>0的解集為(-2,1),則不等式cx2-bx+a<0的解集是(-∞,-1)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“l(fā)nx<1”是“x<e”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow{a}$•$\overrightarrow$=-$\frac{{5\sqrt{30}}}{2}$,且($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=-15,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.用合適的符號填空:
(1)$\sqrt{5}$-$\sqrt{2}$∈R,$\sqrt{16}$∈Z    
(2)N?{0,1},Q?N
(3)-1∉{x|x2=-1},-2∉{x|x2-6x+8=0}
(4)∅={x|x2+3=0},∅?R
(5){2}?{x|x2-4=0},Z?R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)是定義在R上的奇函數(shù),則一定有( 。
A.f(x)+f(-x)=0B.f(x)-f(-x)=0C.$\frac{f(-x)}{f(x)}=-1$D.$\frac{f(-x)}{f(x)}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)A,B在圓x2+y2=1上運(yùn)動,且|AB|=$\sqrt{3}$,點(diǎn)P在直線3x+4y-12=0上運(yùn)動,則|$\overrightarrow{PA}$+$\overrightarrow{PB}$|的最小值為( 。
A.3B.4C.$\frac{17}{5}$D.$\frac{19}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若△ABC在平面α外,它的三條邊所在的直線分別交α于P、Q、R,則點(diǎn)Q∈直線PR(用符號表示它們的位置關(guān)系).

查看答案和解析>>

同步練習(xí)冊答案