8.已知全集U=R,集合A={x|1≤2x+9<5},則∁UA(-∞,-4)∪[-2,+∞).

分析 求出中不等式的解集確定出A,找出A的補(bǔ)集即可.

解答 解:由A中不等式解得:-4≤x<-2,
∴A=[-4,-2),
∵全集U=R,
∴∁UA=(-∞,-4)∪[-2,+∞),
故答案為:(-∞,-4)∪[-2,+∞)

點(diǎn)評(píng) 此題考查了補(bǔ)集及其運(yùn)算,熟練掌握補(bǔ)集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知等比數(shù)列{an}中,若a1•a5=16,則a3等于( 。
A.2B.±2C.4D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若f(3x+2)=9x+8,則f(8)=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.己知 a>0 且 a≠1,若函數(shù)f(x)=loga(x-1),g(x)=loga(5-x).
(1)求函數(shù)h(x)=f(x)-g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時(shí)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,an+1=2Sn+2n,則數(shù)列{an}的通項(xiàng)公式an=2×3n-1-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,該程序運(yùn)行后輸出i的值是( 。 
A.5B.6C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.為得到函數(shù)y=sin2x+cos2x的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)長(zhǎng)度單位
B.向右平移$\frac{π}{4}$個(gè)長(zhǎng)度單位
C.向左平移$\frac{π}{8}$個(gè)長(zhǎng)度單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的$\sqrt{2}$倍
D.向右平移$\frac{π}{8}$個(gè)長(zhǎng)度單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的$\sqrt{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,已知B(-5,0),C(5,0),且sinC-sinB=$\frac{3}{5}$sinA,則點(diǎn)A的軌跡方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$(x>3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=-lnx+ax2+bx-a-2b有兩個(gè)極值點(diǎn)x1,x2,其中-$\frac{1}{2}$<a<0,b>0,且f(x2)=x2>x1,則方程2a[f(x)]2+bf(x)-1=0的實(shí)根個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案