6.直線x-$\sqrt{3}$y+3=0的傾斜角為$\frac{π}{6}$.

分析 設(shè)直線x-$\sqrt{3}$y+3=0的傾斜角為α,則tanα=-$\frac{1}{-\sqrt{3}}$,α∈[0,π),即可得出.

解答 解:設(shè)直線x-$\sqrt{3}$y+3=0的傾斜角為α,
則tanα=-$\frac{1}{-\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,α∈[0,π),
∴$α=\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評(píng) 本題考查了直線的傾斜角與斜率的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},則A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x||4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},則∁RA∩B=( 。
A.(-3-2]B.(-3-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-3)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某流感病研究中心對(duì)溫差與甲型H1N1病毒感染數(shù)之間的相關(guān)關(guān)系進(jìn)行研究,他們每天將實(shí)驗(yàn)室放入數(shù)量相同的甲型H1N1病毒和100只白鼠,然后分別記錄了4月1日至4月5日每天晝夜溫差與實(shí)驗(yàn)室里100只白鼠的感染數(shù),得到如下資料:
日  期4月1日4月2日4月3日4月4日4月5日
溫  差101311127
感染數(shù)2332242917
(1)求這5天的平均感染數(shù);
(2)從4月1日至4月5日中任取2天,記感染數(shù)分別為x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)視為同一事件,并求|x-y|≤3或|x-y|≥9的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線交雙曲線C的右支于A,B兩點(diǎn),如果|AF1|=3a,|BF1|=5a,則此雙曲線的漸近線方程為y=$±\frac{{\sqrt{6}}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知H是球O的直徑AB上一點(diǎn),AH:HB=1:2,AB⊥平面α,H為垂足,α截球O所得截面的面積為4π,則球O的表面積為(  )
A.$\frac{9π}{2}$B.$\frac{9π}{4}$C.D.18π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.集合{x|0<|x-1|<3,x∈Z}的真子集個(gè)數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow a$=(2,3),$\overrightarrow b$=(4,y+1),且$\overrightarrow a$∥$\overrightarrow b$,則y=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案