已知關(guān)于x的不等式的解集,則實數(shù)a=   
【答案】分析:先利用解分式不等式的方法轉(zhuǎn)化原不等式,再結(jié)合其解集,得到x=-是方程ax-1=0的一個根,最后利用方程的思想求解即得.
解答:解:∵不等式
∴(ax-1)(x+1)<0,
又∵關(guān)于x的不等式的解集,
∴x=-是方程ax-1=0的一個根,
∴a×(-)-1=0,
∴a=-2.
故答案為:-2.
點評:本小題主要考查分式不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)方程思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知關(guān)于x的不等式|ax-2|+|ax-a|≥2(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:《1.2.2 絕對值不等式的解法》2013年同步練習(解析版) 題型:解答題

選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省高考數(shù)學全真模擬試卷(3)(解析版) 題型:解答題

選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案