已知數(shù)列{an}滿足:a1=
1
3
,且對任意的正整數(shù)m、n,都有am+n=am•an,若數(shù)列{an}的前n項和為Sn,則
lim
n→∞
Sn
等于( 。
分析:根據(jù)a1=
1
3
和am+n=am•an得出數(shù)列{an}的通項公式,判斷數(shù)列{an}為等比數(shù)列,進而表示出數(shù)列的前n項和,最后得出答案.
解答:解:數(shù)列{an}滿足:a1=
1
3
,且對任意正整數(shù)m,n都有am+n=am•an
∴a2=a1+1=a1•a1=
1
9
,an+1=an•a1=
1
3
an,
∴數(shù)列{an}是首項為
1
3
,公比為
1
3
的等比數(shù)列.
lim
n→∞
Sn
=
lim
n→∞
(a1+a2+…+an)=
a1
1-q
=
1
2
,
故選A.
點評:本題主要考查了等比數(shù)列的前n項的和.無窮等比數(shù)列公比的絕對值小于1的數(shù)列的極限的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案