12.求直線l:x+y-5=0和圓C:x2+y2-4x+6y-12=0的位置關(guān)系( 。
A.相離B.相切C.相交D.過(guò)圓心

分析 圓C:x2+y2-4x+6y-12=0可化為(x-2)2+(y+3)2=25,確定圓心坐標(biāo)與半徑,求出圓心到直線的距離d<r,即可得出結(jié)論.

解答 解:圓C:x2+y2-4x+6y-12=0可化為(x-2)2+(y+3)2=25,圓心坐標(biāo)為(2,-3),半徑為5,
圓心到直線的距離d=$\frac{|2-3-5|}{\sqrt{2}}$=3$\sqrt{2}$<5,
∴直線與圓相交,
故選:C.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a=40.8,b=(${\frac{1}{2}}$)-1.5,c=log20.8,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=-x2-2x+3在[-5,2]上的最小值和最大值分別為( 。
A.-12,-5B.-12,4C.-13,4D.-10,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1,記Sn是數(shù)列{an}的前n項(xiàng)和,則S60=480.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知等差數(shù)列{an}滿足a2=3,a3+a4=12,則數(shù)列{an}的通項(xiàng)公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)A、B是兩個(gè)非空集合,定義A×B={x|x∈A∪B且x∉A∩B},已知A={x|y=$\sqrt{2x-{x}^{2}}$},B=$\{y|y=\frac{1}{x},0<x<1\}$,則A×B=( 。
A.[0,1)∪(2,+∞)B.[0,1]∪(2,+∞)C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)關(guān)于x的方程x2-2(m-1)x+m-1=0的兩個(gè)根為α,β,且0<α<1<β<2,則實(shí)數(shù)m的取值范圍是2<m<$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)計(jì)算:[(-2)10]${\;}^{\frac{1}{2}}$+(-1)0+2${\;}^{-2+lo{g}_{2}3}$+$\root{3}{(-\frac{3}{4})^{3}}$;
(2)已知角α終邊上一點(diǎn)P(-4a,3a),a≠0,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知點(diǎn)P為△ABC所在平面外一點(diǎn),點(diǎn)D、E、F分別在直線PA、PB、PC上,平面DEF∥平面ABC,且$\frac{PD}{DA}$=$\frac{PE}{EB}$=$\frac{PF}{FC}$=$\frac{2}{3}$,則$\frac{{S}_{△DEF}}{{S}_{△ABC}}$=( 。
A.$\frac{4}{9}$B.$\frac{4}{25}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案