【題目】—只螞蟻在三邊長分別為,,的三角形內(nèi)自由爬行,某時刻該螞蟻距離三角形的任意一個頂點的距離不超過的概率為( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流行多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在語音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小軍和大明兩位同學進行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小軍和大明比賽至第四局小軍勝出的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)(實數(shù)、為常數(shù)),且滿足.
(1)求函數(shù)的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;
(3)當時,函數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一盒中裝有12個球,其中5個紅球,4個黑球,2個白球,1個綠球.從中隨機取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),令.
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實數(shù)滿足,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來鄭州空氣污染較為嚴重,現(xiàn)隨機抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失為(單位:元),指數(shù)為.當在區(qū)間內(nèi)時對企業(yè)沒有造成經(jīng)濟損失;當在區(qū)間內(nèi)時對企業(yè)造成經(jīng)濟損失成直線模型(當指數(shù)為150時造成的經(jīng)濟損失為500元,當指數(shù)為200時,造成的經(jīng)濟損失為700元);當指數(shù)大于300時造成的經(jīng)濟損失為2000元.
(1)試寫出的表達式;
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認為鄭州市本年度空氣重度污染與供暖有關(guān)?
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.828 |
,其中.
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為半圓的直徑,點是半圓弧上的兩點, , .曲線經(jīng)過點,且曲線上任意點滿足: 為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)過點的直線與曲線交于不同的兩點,求面積最大時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com